Skip to main content
Log in

Effective combination of Fe2O3 with hierarchical porous carbon for high-performance lithium storage

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, the well-designed hybrid materials composed of Fe2O3 nanoparticles embedded in hierarchical porous carbon matrix (HPCs/Fe2O3) were prepared by a two-step approach, involving a salt template route followed by hydrothermal treatment. The hierarchical porous structure not only serves as a buffer matrix to alleviate the volume expansion of Fe2O3 nanoparticles, but also provides a large surface area and high electrical conductivity, resulting in significant improvement of electrochemical performance. HPCs/Fe2O3-2 anode delivers a high reversible capacity of 1357.60 mAh g−1 after 100 cycles at 0.2 A g−1 and an outstanding rate behavior. It also exhibits an excellent cycling-life stability of 472.3 mAh g−1 after 1000 cycles at a high current density of 5 A g−1, suggesting its potential application in LIBs anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  PubMed  Google Scholar 

  3. Saravanan K, Ananthanarayanan K, Balaya P (2010) Mesoporous TiO2 with high packing density for superior lithium storage. Energy Environ Sci 3:939

    Article  CAS  Google Scholar 

  4. Sun BY, Lou SF, Zheng W, Qian ZY, Cui C, Zou PJ, Du CY, Xie JY, Wang JJ, Yin GP (2020) Synergistic engineering of defects and architecture in Co3O4@C nanosheets toward Li/Na ion batteries with enhanced pseudocapacitances. Nano Energy 78:105366

    Article  CAS  Google Scholar 

  5. Yoon J, Choi W, Kim H, Choi YS, Kim JM, Yoon WS (2021) The effects of nanostructures on lithium storage behavior in Mn2O3 anodes for next-generation lithium-ion batteries. J Power Sources 493:229682

  6. Lee SH, Yu SH, Lee JE, Jin A, Lee DJ, Lee N, Jo H, Shin K, Ahn TY, Kim YW, Choe H, Sung YE, Hyeon T (2013) Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett 13:4249–4256

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Park C, Samuel E, Joshi B, Kim T, Aldalbahi A, El-Newehy M, Yoon WY, Yoon SS (2020) Supersonically sprayed Fe2O3/C/CNT composites for highly stable Li-ion battery anodes. Chem Eng J 395:125018

    Article  CAS  Google Scholar 

  8. Liang BR, Wang JJ, Zhang SY, Liang XQ, Huang HF, Huang D, Zhou WZ, Guo J (2020) Hybrid of Co-doped SnO2 and graphene sheets as anode material with enhanced lithium storage properties. Appl Surf Sci 533:147447

    Article  CAS  Google Scholar 

  9. Chen JS, Tan YL, Li CM, Cheah YL, Luan D, Madhavi S, Boey FYC, Archer LA, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130

    Article  CAS  PubMed  Google Scholar 

  10. Kwon KA, Lim HS, Sun YK, Suh KD (2014) α-Fe2O3 submicron spheres with hollow and macroporous structures as high-performance anode materials for lithium ion batteries. J Phys Chem C 118:2897–2907

    Article  CAS  Google Scholar 

  11. Huang Y, Lin Z, Zheng M, Wang T, Yang J, Yuan F, Lu X, Liu L, Sun D (2016) Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J Power Sources 307:649–656

    Article  CAS  Google Scholar 

  12. Reddy MV, Yu T, Sow CH, Shen Z, Lim CT, Subba Rao GV, Chowdari BVR (2007) α-Fe2O3 nanoflakes as an anode material for li-ion batteries. Adv Funct Mater 17:2792–2799

    Article  CAS  Google Scholar 

  13. Penki TR, Shivakumara S, Minakshi M, Munichandraiah N (2015) Porous flower-like α-Fe2O3 nanostructure: a high performance anode material for lithium-ion batteries. Electrochim Acta 167:330–339

    Article  CAS  Google Scholar 

  14. Xu S, Hessel CM, Ren H, Yu R, Jin Q, Yang M, Zhao H, Wang D (2014) α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7:632–637

    Article  CAS  Google Scholar 

  15. Wu S, Xu F, Li Y, Liu C, Zhang Yand Fan H (2023) Synergistically enhanced sodium ion storage from encapsulating highly dispersed cobalt nanodots into N, P, S tri-doped hexapod carbon framework. J Colloid Interf Sci 649:741–749

    Article  ADS  CAS  Google Scholar 

  16. Cao JM, Zatovsky IV, Gu ZY, Yang JL, Zhao XX, Gu JZ, Xu H, Wu XL (2023) Two-dimensional MXene with multidimensional carbonaceous matrix: a platform for general-purpose functional materials. Prog Mater Sci 135:101105

    Article  CAS  Google Scholar 

  17. Wang XT, Yang Y, Guo JZ, Gu ZY, Ang EH, Sun ZH, Li WH, Liang HJ, Wu XL (2022) An advanced cathode composite for co-utilization of cations and anions in lithium batteries. J Mater Sci Techno 102:72–79

    Article  CAS  Google Scholar 

  18. Wang Z, Denis DK, Zhao Z, Sun X, Zhang J, Hou L, Yuan C (2019) Unusual formation of hollow NiCoO2 submicrospheres by oxygen functional group dominated thermally induced mass relocation towards efficient lithium storage. J Mater Chem A 7:18109–18117

    Article  CAS  Google Scholar 

  19. Hou L, Bao R, Zhang Y, Sun X, Zhang J, Dou H, Zhang X, Yuan C (2018) Structure-designed synthesis of yolk–shell hollow ZnFe2O4/C@N-doped carbon sub-microspheres as a competitive anode for high-performance Li-ion batteries. J Mater Chem A 6:17947–17958

    Article  CAS  Google Scholar 

  20. Hou X, Kang J, Zhou G, Wang J (2022) Preparation of Fe2O3@C composite with octahedron-like Fe2O3 embedded in carbon framework as a superior anode for LIBs. Mater Lett 313:131736

    Article  CAS  Google Scholar 

  21. Wang JT, Yang XJ, Wang YB, Jin SL, Cai WD, Liu BS, Ma C, Liu XJ, Qiao WM, Ling LC (2021) Rational design and synthesis of sandwich-like reduced graphene oxide/Fe2O3/N-doped carbon nanosheets as high-performance anode materials for lithium-ion batteries. Chem Eng Sci 231:116271

    Article  CAS  Google Scholar 

  22. Huang R, Li YF, Liu WB, Song YH, Wang L (2020) N-doped honeycomb-like carbon networks loaded with ultra-fine Fe2O3 nanoparticles for lithium-ion batteries. Ceram Inter 46:17478–17485

    Article  CAS  Google Scholar 

  23. Sun MF, Chu XF, Wang ZK, Yang HX, Yang Z, Ma JJ, Zhou B, Yang TY, Chen LZ (2021) Rosa roxburghii-like hierarchical hollow sandwich-structure C@Fe2O3@C microspheres as second nanomaterials for superior lithium storage. J Alloy Compd 855:157518

    Article  CAS  Google Scholar 

  24. Ban QF, Liu YY, Liu PY, Li Y, Qin YS, Zheng YC (2022) Hierarchically nanostructured carbon nanotube/polyimide/mesoporous Fe2O3 nanocomposite for organic-inorganic lithium-ion battery anode. Micropor Mesopor Mat 335:111803

    Article  CAS  Google Scholar 

  25. Zhu MY, Kan JR, Pan JM, Tong WJ, Chen Q, Wang JC, Li SJ (2019) One-pot hydrothermal fabrication of α-Fe2O3@C nanocomposites for electrochemical energy storage. J Energy Chem 28:1–8

    Article  Google Scholar 

  26. Xiao JF, Wang Y, Zhang TC, Yuan SJ (2021) rGO/N-porous carbon composites for enhanced CO2 capture and energy storage performances. J Alloy Compd 857:157534

    Article  CAS  Google Scholar 

  27. Jia HY, Zhang H, Wan S, Sun JW, Xie X, Sun LT (2019) Preparation of nitrogen-doped porous carbon via adsorption-doping for highly efficient energy storage. J Power Sources 433:226712

    Article  CAS  Google Scholar 

  28. Talreja N, Jung SH, Yen LTH, Kim TY (2020) Phenol-formaldehyde-resin-based activated carbons with controlled pore size distribution for high-performance supercapacitors. Chem Eng J 379:122332

    Article  CAS  Google Scholar 

  29. Wang PY, Yang BJ, Zhang GH, Zhang L, Jiao HY, Chen JT, Yan XB (2018) Three-dimensional carbon framework as a promising anode material for high performance sodium ion storage devices. Chem Eng J 353:453–459

    Article  CAS  Google Scholar 

  30. Bai QH, Xiong QC, Li C, Shen YH, Uyama H (2018) Hierarchical porous carbons from a sodium alginate/bacterial cellulose composite for high-performance supercapacitor electrodes. Appl Surf Sci 455:795–807

    Article  ADS  CAS  Google Scholar 

  31. Fechler N, Fellinger T, Antonietti M (2013) “Salt templating”: a simple and sustainable pathway toward highly porous functional carbons from ionic liquids. Adv Mater 25:75–79

    Article  CAS  PubMed  Google Scholar 

  32. Zhao JF, Wen XM, Xu HS, Wen YC, Lu HB, Meng XK (2019) Salting-out and salting-in of protein: a novel approach toward fabrication of hierarchical porous carbon for energy storage application. J Alloy Compd 788:397–406

    Article  CAS  Google Scholar 

  33. Zhao JF, Weng YC, Xu SL, Shebl A, Wen XM, Yang G (2020) Protein-mediated synthesis of Fe3N nanoparticles embedded in hierarchical porous carbon for enhanced reversible lithium storage. J Power Source 464:228246

    Article  CAS  Google Scholar 

  34. Zhao JF, Xie XD, Xi MQ, Wang ZC, Yin SL, Wang ZF, Yang G (2022) Salt-assisted synthesis of Fe3O4 nanoparticles embedded in hierarchical porous carbon for high-performance lithium storage. Diam Relat Mater 128:109208

    Article  ADS  CAS  Google Scholar 

  35. Qin D, Liu Z, Zhao Y, Xu G, Zhang F, Zhang X (2018) A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode. Carbon 130:664–671

    Article  CAS  Google Scholar 

  36. Zhao JF, Zha JC, Lu HB, Yang C, Yan K, Meng XK (2016) Cauliflower-like Ni/NiO architectures transformed from nickel alkoxide and their excellent removal of Congo red and Cr (VI) ions from water. RSC adv 6:103585–103593

    Article  ADS  CAS  Google Scholar 

  37. Sun MF, Chu XF, Wang ZK, Yang HX, Yang Z, Ma JJ, Zhou B, Yang TY, Chen LZ (2012) Rosa roxburghii-like hierarchical hollow sandwich-structure C@Fe2O3@C microspheres as second nanomaterialsfor superior lithium storage. J Alloy Compd 855:157518

    Article  Google Scholar 

  38. Jiao Z, Zhao PD, He YC, Ling L, Sun WF, Cheng LL (2019) Mesoporous yolk-shell CoS2/nitrogen-doped carbon dodecahedron nanocomposites as efficient anode materials for lithium-ion batteries. J Alloy Compd 809:151854

    Article  CAS  Google Scholar 

  39. Ju WT, Jin B, Dong CW, Wen Z, Jiang Q (2020) Rice-shaped Fe2O3@C@Mn3O4 with three-layer core-shell structure as a high-performance anode for lithium-ion batteries. J Electroanal Chem 861:113942

    Article  CAS  Google Scholar 

  40. Roberts AD, Li X, Zhang HF (2014) Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev 43:4341–4356

    Article  CAS  PubMed  Google Scholar 

  41. Hu H, Cheng H, Zhou J, Zhu Q, Yu Y (2017) Hierarchical porous Fe2O3 assisted with graphene-like carbon as high performance lithium battery anodes. Mater Today Phys 3:7–15

    Article  Google Scholar 

  42. Yang Z, Shen J, Archer LA (2011) An in situ method of creating metal oxide-carbon composites and their application as anode materials for lithium-ion batteries. J Mater Chem 21:11092–11097

    Article  CAS  Google Scholar 

  43. Zhang ZY, Liang JS, Zhang X, Yang WF, Dong XL, Jung YG (2020) Dominant pseudocapacitive lithium storage in the carbon-coated ferric oxide nanoparticles (Fe2O3@C) towards anode materials for lithium-ion batteries. Int J Hydrogen Energy 45:8186–8197

    Article  CAS  Google Scholar 

  44. Luo SH, Hu DB, Liu H, Li JZ, Yi TF (2019) Hydrothermal synthesis and characterization of α-Fe2O3/C using acid pickled iron oxide red for Li-ion batteries. J Hazard Mater 368:714–721

    Article  CAS  PubMed  Google Scholar 

  45. Shi Q, Zhou Y, Chen J, Pan YX, Wu YJ, Zhu LC, Yuan ZZ (2022) Turning carbon black into hollow carbon nanospheres to encapsulate Fe2O3 as high-performance lithium-ion batteries anode. Micropor Mesopor Mat 332:111681

    Article  CAS  Google Scholar 

  46. Li Y, Huang Y, Zheng Y, Huang R, Yao J (2019) Facile and efficient synthesis of α-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries. J Power Sources 416(2019):62–71

    Article  CAS  Google Scholar 

  47. Yan XS, Jiang FY, Sun XQ, Du R, Zhang M, Kang LT, Han Q, Du W, You DJ, Zhou YL (2020) A simple, low-cost and scale-up synthesis strategy of spherical graphite/Fe2O3 composites as high-performance anode materials for half/full lithium ion batteries. J Alloy Compd 822:153719

    Article  CAS  Google Scholar 

  48. Idrees M, Inayat A, Ullah I, Albalawi K, Ullah S, Bashir S, Wageh S, Haider A, Rehman A, Abbas SM, Zhang Q, Li XK (2022) Hierarchical nanospheres of Fe2O3-Fe2N anchored on reduced graphene oxide as a high-performance anode for lithium-ion batteries. Surf Interfaces 30:101959

    Article  CAS  Google Scholar 

  49. Shi Q, Zhou Y, Cheng J, Pan YX, Wu YJ, Zhu LC, Yuan ZZ (2022) Turning carbon black into hollow carbon nanospheres to encapsulate Fe2O3 as high-performance lithium-ion batteries anode. Micropor Mesopor Mat 332:111681

    Article  CAS  Google Scholar 

  50. Huang H, Kong LJ, Shuang W, Xu W, He J, Bu XH (2022) Controlled synthesis of core-shell Fe2O3 @N-C with ultralong cycle life for lithium-ion batteries. Chinese Chem Lett 33:1037–1041

    Article  CAS  Google Scholar 

  51. Wang WY, Feng Y, Zhang SG, Wang M, Song W, Yue LC, Ge MZ, Mi J (2022) Facile premixed flame synthesis C@Fe2O3/SWCNT as superior free- standing anode for lithium-ion batteries. J Alloy Compd 905:164247

    Article  CAS  Google Scholar 

  52. Gao Y, Yi R, Li YC, Song J, Chen S, Huang Q, Mallouk TE, Wang D (2017) General method of manipulating formation, composition, and morphology of solid electrolyte interphases for stable Li-alloy anodes. J Am Chem Soc 139:17359–17367

    Article  CAS  PubMed  Google Scholar 

  53. Kotobuki M, Suzuki Y, Munakata H, Kanamura K, Sato Y, Yamamoto K, Yoshida T (2011) Effect of sol composition on solid electrode/solid electrolyte interface for all-solid-state lithium ion battery. Electrochim Acta 56:1023–1029

    Article  CAS  Google Scholar 

  54. Yang L, Wu Y, Wu Y, Younas W, Jia J, Cao C (2019) Hierarchical flower-like Fe2O3 mesoporous nanosheets with superior electrochemical lithium storage performance. J Energy Storage 23:363–370

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xun Liu: Sample preparation, Structural characterization, Performance testing, Data analysis, Writing - Original Draft.

Kaiyang Xiong: Sample preparation, Structural characterization, Performance testing.

Haoxiang Yuan: Sample preparation, Structural characterization.

Junfeng Zhao: Resources, Writing - Review & Editing, Supervision, Data Curation.

Corresponding author

Correspondence to Junfeng Zhao.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4751 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xiong, K., Yuan, H. et al. Effective combination of Fe2O3 with hierarchical porous carbon for high-performance lithium storage. Ionics 30, 1373–1381 (2024). https://doi.org/10.1007/s11581-024-05398-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05398-4

Keywords

Navigation