Skip to main content
Log in

Epoxy resin-derived N, P co-doping hard carbon with improved yield and anode performance in Li-ion battery

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Electrochemical energy storage devices play key roles in collecting energy from new energy power sources, transferring energy in place and time difference, and supplying energy for those energy consumers. In this work, in order to further improve the high energy density of Li-ion battery, a hard carbon anode is suggested by chosen epoxy as carbon source, accompanied by the simultaneous introduction of three curing agents (dicyandiamide, phytic acid (PA), and ferric acetylacetone). Furthermore, dicyandiamide supplies N-dopant, while PA gives P-dopant and also increases the yield of hard carbon from 23.6 to 40.9%. Based on the synergistic effect of N and P atoms, as well as catalytic effect of Fe, the optimized hard carbon of CNFP-60–700, as Li-ion battery anode, exhibits a reversible capacity of 779.2 mAh g−1 and an initial Coulombic efficiency (ICE) of 58.8% at 0.1 A g−1 for the first cycle, and it still retains a capacity of 508.3 mAh g−1 after 160 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data reported in this manuscript are available from the corresponding author on a reasonable request.

References

  1. Chia SR, Nomanbhay S, Ong MY, Shamsuddin AHB, Chew KW, Show PL (2022) Renewable diesel as fossil fuel substitution in Malaysia: a review. Fuel 314:123137. https://doi.org/10.1016/j.fuel.2022.123137

    Article  CAS  Google Scholar 

  2. Yang XD, Zhang JN, Ren SY, Ran QY (2021) Can the new energy demonstration city policy reduce environmental pollution? Evidence from a quasi-natural experiment in China. J Clean Prod 287:125015. https://doi.org/10.1016/j.jclepro.2020.125015

    Article  Google Scholar 

  3. Lehtola T, Zahedi A (2019) Solar energy and wind power supply supported by storage technology: a review. Sustain Energy Technol Assess 35:25–31. https://doi.org/10.1016/j.seta.2019.05.013

    Article  Google Scholar 

  4. Gong JL, Li C, Wasielewski MR (2019) Advances in solar energy conversion. Chem Soc Rev 48:1862–1864. https://doi.org/10.1039/c9cs90020a

    Article  CAS  PubMed  Google Scholar 

  5. Drücke J, Borsche M, James P, Kaspar F, Pfeifroth U, Ahrens B, Trentmann J (2021) Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification. Renew Energy 164:1254–1266. https://doi.org/10.1016/j.renene.2020.10.102

    Article  Google Scholar 

  6. Veers P, Dykes K, Lantz E, Barth S, Bottasso CL, Carlson O, Clifton A, Green J, Green P, Holttinen H, Laird D, Lehtomäki V, Lundquist JK, Manwell J, Marquis M, Meneveau C, Moriarty P, Munduate X, Muskulus M, Naughton J, Pao L, Paquette J, Peinke J, Robertson A, Sanz Rodrigo J, Sempreviva AM, Smith JC, Tuohy A, Wiser R (2019) Grand challenges in the science of wind energy. Science 366:1–18. https://doi.org/10.1126/science.aau2027

    Article  CAS  Google Scholar 

  7. Chowdhury MS, Rahman KS, Selvanathan V, Nuthammachot N, Suklueng M, Mostafaeipour A, Habib A, Akhtaruzzaman M, Amin N, Techato K (2021) Current trends and prospects of tidal energy technology. Environ Dev Sustain 23:8179–8194. https://doi.org/10.1007/s10668-020-01013-4

    Article  CAS  PubMed  Google Scholar 

  8. Khan ZA, Hussain T, Haq IU, Ullah FUM, Baik SW (2022) Towards efficient and effective renewable energy prediction via deep learning. Energy Rep 8:10230–10243. https://doi.org/10.1016/j.egyr.2022.08.009

    Article  Google Scholar 

  9. Zhang JJ, Li HH, Chen DY, Xu BB, Mahmud MA (2021) Flexibility assessment of a hybrid power system: hydroelectric units in balancing the injection of wind power. Renew Energy 171:1313–1326. https://doi.org/10.1016/j.renene.2021.02.122

    Article  Google Scholar 

  10. Cai K, Wang T, Wang Z, Wang J, Li L, Yao C, Lang X (2023) A cocklebur-like sulfur host with the TiO2-VOx heterostructure efficiently implementing one-step adsorption-diffusion-conversion towards long-life Li–S batteries. Compos B Eng 249:110410. https://doi.org/10.1016/j.compositesb.2022.110410

    Article  CAS  Google Scholar 

  11. Kebede AA, Kalogiannis T, Van Mierlo J, Berecibar M (2022) A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew Sust Energ Rev 159:112213. https://doi.org/10.1016/j.rser.2022.112213

    Article  CAS  Google Scholar 

  12. Su Y, Yu S, Lang X, Wang T, Qu T, Wang Q, Li L, Yao C, Bai Z, Zhao Y, Cai K (2023) Cross-linked Si@SiC nanowires prepared by vacuum DC arc method embedded in phenolic resin as high electrochemical performance anode active materials for lithium-ion batteries. Electrochim Acta 463:142808. https://doi.org/10.1016/j.electacta.2023.142808

    Article  CAS  Google Scholar 

  13. Nzereogu PU, Omah AD, Ezema FI, Iwuoha EI, Nwanya AC (2022) Anode materials for lithium-ion batteries: a review. Appl Surf Sci Adv 9:100233. https://doi.org/10.1016/j.apsadv.2022.100233

    Article  Google Scholar 

  14. Hou JZ, Mao XY, Wang JY, Liang C, Liang JC (2021) Preparation of rice husk-derived porous hard carbon: a self-template method for biomass anode material used for high-performance lithium-ion battery. Chem Phys 551:111352. https://doi.org/10.1016/j.chemphys.2021.111352

    Article  CAS  Google Scholar 

  15. Rao XF, Lou YT, Chen J, Lu HC, Cheng B, Wang WT, Fang H, Li HL, Zhong SW (2020) Polyacrylonitrile hard carbon as anode of high rate capability for lithium ion batteries. Front Energy Res 8:3. https://doi.org/10.3389/fenrg.2020.00003

    Article  Google Scholar 

  16. Xie LJ, Tang C, Bi ZH, Song MX, Fan YF, Yan C, Li XM, Su FY, Zhang Q, Chen CM (2021) Hard Carbon anodes for next-generation Li-ion batteries: review and perspective. Adv Energy Mater 11:2101650. https://doi.org/10.1002/aenm.202101650

    Article  CAS  Google Scholar 

  17. Drews M, Büttner J, Bauer M, Ahmed J, Sahu R, Scheu C, Vierrath S, Fischer A, Biro D (2021) Spruce hard carbon anodes for lithium-ion batteries. ChemElectroChem 8:4750–4761. https://doi.org/10.1002/celc.202101174

    Article  CAS  Google Scholar 

  18. Zhang X, Qu H, Ji W, Zheng D, Ding T, Abegglen C, Qiu D, Qu D (2020) Fast and controllable prelithiation of hard carbon anodes for lithium-ion batteries. ACS Appl Mater Interfaces 12:11589–11599. https://doi.org/10.1021/acsami.9b21417

    Article  CAS  PubMed  Google Scholar 

  19. Li M, Lu J, Chen ZW, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561. https://doi.org/10.1002/adma.201800561

    Article  CAS  Google Scholar 

  20. Abe Y, Saito T, Kumagai S (2018) Effect of prelithiation process for hard carbon negative electrode on the rate and cycling behaviors of lithium-ion batteries. Batteries 4:71. https://doi.org/10.3390/batteries4040071

    Article  CAS  Google Scholar 

  21. Arnaiz M, Canal-Rodríguez M, Carriazo D, Villaverde A, Ajuria J (2023) Enabling versatile, custom-made lithium-ion capacitor prototypes: benefits and drawbacks of using hard carbon instead of graphite. Electrochim Acta 437:141456. https://doi.org/10.1016/j.electacta.2022.141456

    Article  CAS  Google Scholar 

  22. Li Y, Du YF, Sun GH, Cheng JY, Song G, Song MX, Su FY, Yang F, Xie LJ, Chen CM (2021) Self-standing hard carbon anode derived from hyper-linked nanocellulose with high cycling stability for lithium-ion batteries. EcoMat 3:e12091. https://doi.org/10.1002/eom2.12091

    Article  CAS  Google Scholar 

  23. Nishi Y (2016) The dawn of lithium-ion batteries. Electrochem Soc Interface 25:71. https://doi.org/10.1149/2.F06163if

    Article  Google Scholar 

  24. Zhang J, Shi ZQ, Wang J, Shi JL (2015) Composite of mesocarbon microbeads/hard carbon as anode material for lithium ion capacitor with high electrochemical performance. J Electroanal Chem 747:20–28. https://doi.org/10.1016/j.jelechem.2015.03.035

    Article  CAS  Google Scholar 

  25. Alvin S, Cahyadi HS, Hwang J, Chang W, Kwak SK, Kim J (2020) Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv Energy Mater 10:2000283. https://doi.org/10.1002/aenm.202000283

    Article  CAS  Google Scholar 

  26. Yu P, Tang W, Wu FF, Zhang C, Luo HY, Liu H, Wang ZG (2020) Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met 39:1019–1033. https://doi.org/10.1007/s12598-020-01443-z

    Article  CAS  Google Scholar 

  27. Yu CX, Li Y, Wang ZH, Wang XR, Bai Y, Wu C (2022) Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery. Rare Met 41:1616–1625. https://doi.org/10.1007/s12598-021-01893-z

    Article  CAS  Google Scholar 

  28. Xu R, Sun N, Zhou HY, Chang XQ, Soomro RA, Xu B (2023) Hard carbon anodes derived from phenolic resin/sucrose cross-linking network for high-performance sodium-ion batteries. Battery Energy 2:20220054. https://doi.org/10.1002/bte2.20220054

    Article  CAS  Google Scholar 

  29. Sun N, Zhao R, Xu MY, Zhang SH, Soomro RA, Xu B (2023) Design advanced nitrogen/oxygen co-doped hard carbon microspheres from phenolic resin with boosted Na-storage performance. J Power Sources 564:232879. https://doi.org/10.1016/j.jpowsour.2023.232879

    Article  CAS  Google Scholar 

  30. Yang PJ, Li TH, Li H, Dang AL, Yuan L (2023) Effect of coal tar pitch modification on the structure and char yield of pyrolysis epoxy resin carbons. Diam Relat Mat 137:110099. https://doi.org/10.1016/j.diamond.2023.110099

    Article  CAS  Google Scholar 

  31. Tian YZ, Wang Q, Shen LJ, Cui ZC, Kou LL, Cheng J, Zhang JY (2020) A renewable resveratrol-based epoxy resin with high Tg, excellent mechanical properties and low flammability. Chem Eng J 383:123124. https://doi.org/10.1016/j.cej.2019.123124

    Article  CAS  Google Scholar 

  32. Zhang J, Li Z, Zhang L, Yang YX, Wang D (2020) Green synthesis of biomass phytic acid-functionalized UiO-66-NH2 hierarchical hybrids toward fire safety of epoxy resin. ACS Sustain Chem Eng 8:994–1003. https://doi.org/10.1021/acssuschemeng.9b05658

    Article  CAS  Google Scholar 

  33. Liu YL, Wang BB, Ma SQ, Xu XW, Qiu JF, Li Q, Wang S, Lu N, Ye JL, Zhu J (2021) Phosphate-based covalent adaptable networks with recyclability and flame retardancy from bioresources. Eur Polym J 144:110236. https://doi.org/10.1016/j.eurpolymj.2020.110236

    Article  CAS  Google Scholar 

  34. Gong J, Zhao GQ, Feng JK, An YL, Li TT, Zhang L, Li B, Qian Z (2020) Controllable phosphorylation strategy for free-standing phosphorus/nitrogen cofunctionalized porous carbon monoliths as high-performance potassium ion battery anodes. ACS Nano 14:14057–14069. https://doi.org/10.1021/acsnano.0c06690

    Article  CAS  PubMed  Google Scholar 

  35. Liu YP, Xu CX, Ren WQ, Hu LY, Fu WB, Wang W, Yin H, He BH, Hou ZH, Chen L (2023) Self-template synthesis of peapod-like MnO@N-doped hollow carbon nanotubes as an advanced anode for lithium-ion batteries. Rare Met 42:929–939. https://doi.org/10.1007/s12598-022-02203-x

  36. Qian Y, Jiang S, Li Y, Yi Z, Zhou J, Li TQ, Han Y, Wang YS, Tian J, Lin N, Qian YT (2019) In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-Capacity and long-life Li/K-ion batteries. Adv Energy Mater 9:1901676. https://doi.org/10.1002/aenm.201901676

    Article  CAS  Google Scholar 

  37. Wang M, Yang Y, Yang ZZ, Gu L, Chen QW, Yu Y (2017) Sodium-ion batteries: improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping. Adv Sci 4:1600468. https://doi.org/10.1002/advs.201600468

    Article  CAS  Google Scholar 

  38. Cheng XW, Guan JP, Tang RC, Liu KQ (2016) Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric. J Cleaner Prod 124:114–119. https://doi.org/10.1016/j.jclepro.2016.02.113

    Article  CAS  Google Scholar 

  39. Gao XM, Shen ZM, Chang GB, Li Z, Zhao HQ (2022) Mechanochemistry induced pore regulation and pyridinic nitrogen doping in anthracite derived carbon for sodium storage. Diam Relat Mat 130:109481. https://doi.org/10.1016/j.diamond.2022.109481

    Article  CAS  Google Scholar 

  40. Muruganantham R, Chiang YX, Liu WR (2022) Nitrogen-doped hard carbon derived from agro-food waste of mushroom bags biomass as an anode material for sodium-ion batteries. MRS Energy Sustain 9:313–323. https://doi.org/10.1557/s43581-022-00025-z

    Article  Google Scholar 

  41. Song WJ, Tang YK, Liu JM, Xiao SK, Zhang Y, Gao Y, Yang CS, Liu L (2023) Mild pretreatment synthesis of coal-based phosphorus-doped hard carbon with extended plateau capacity as anodes for sodium-ion batteries. J Alloys Compd 946:169384. https://doi.org/10.1016/j.jallcom.2023.169384

    Article  CAS  Google Scholar 

  42. Wu F, Zhou XP, Yu XH (2018) Reaction mechanism, cure behavior and properties of a multifunctional epoxy resin, TGDDM, with latent curing agent dicyandiamide. RSC Adv 8:8248–8258. https://doi.org/10.1039/C7RA13233F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu Y, Wang B, Ma S, Xu X, Qiu J, Li Q, Wang S, Lu N, Ye J, Zhu J (2021) Phosphate-based covalent adaptable networks with recyclability and flame retardancy from bioresources. Eur Polym J 144:110236. https://doi.org/10.1016/j.eurpolymj.2020.110236

    Article  CAS  Google Scholar 

  44. Fan CL, Zhang RS, Luo XH, Hu Z, Zhou W, Zhang WH, Liu JS, Liu JL (2023) Epoxy phenol novolac resin: a novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries. Carbon 205:353–364. https://doi.org/10.1016/j.carbon.2023.01.048

    Article  CAS  Google Scholar 

  45. Liu YX, Guo X, Tian XD, Liu ZJ (2022) Coal-based semicoke-derived carbon anode materials with tunable microcrystalline structure for fast lithium-ion storage. Nanomaterials 12:4067. https://doi.org/10.3390/nano12224067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han S, Yang J, Li XF, Li W, Zhang XT, Koratkar N, Yu ZZ (2020) Flame synthesis of superhydrophilic carbon nanotubes/Ni foam decorated with Fe2O3 nanoparticles for water purification via solar steam generation. ACS Appl Mater Interfaces 12:13229–13238. https://doi.org/10.1021/acsami.0c00606

    Article  CAS  PubMed  Google Scholar 

  47. Wu M, Zhang J, He BB, Wang HW, Wang R, Gong YS (2019) In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution. Appl Catal, B 241:159–166. https://doi.org/10.1016/j.apcatb.2018.09.037

    Article  CAS  Google Scholar 

  48. Wang Z, Liu BL, Xie J, Hu JD, Lu ZJ, Cao YL (2022) Phosphorus/sulfur co-doped hard carbon with a well-designed porous bowl-like structure and enhanced initial coulombic efficiency for high-performance sodium storage. J Alloys Compd 911:164979. https://doi.org/10.1016/j.jallcom.2022.164979

    Article  CAS  Google Scholar 

  49. Fedtke M, Domaratius F, Walter K, Pfitzmann A (1993) Curing of epoxy resins with dicyandiamide. Polym Bull 31:429–435. https://doi.org/10.1007/BF00329879

    Article  CAS  Google Scholar 

  50. Zhu ZM, Shang K, Wang LX, Wang JS (2019) Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: curing behavior, thermal stability and flame retardancy. Polym Degrad Stabil 167:179–188. https://doi.org/10.1016/j.polymdegradstab.2019.07.005

    Article  CAS  Google Scholar 

  51. Yu CB, Wu T, Yang FH, Wang H, Rao WH, Zhao HB (2022) Interfacial engineering to construct P-loaded hollow nanohybrids for flame-retardant and high-performance epoxy resins. J Colloid Interface Sci 628:851–863. https://doi.org/10.1016/j.jcis.2022.08.117

    Article  CAS  PubMed  Google Scholar 

  52. Shi YW, Liu GZ, Wang L, Zhang HW (2019) Heteroatom-doped porous carbons from sucrose and phytic acid for adsorptive desulfurization and sulfamethoxazole removal: a comparison between aqueous and non-aqueous adsorption. J Colloid Interface Sci 557:336–348. https://doi.org/10.1016/j.jcis.2019.09.032

    Article  CAS  PubMed  Google Scholar 

  53. Fang F, Song P, Ran S, Guo Z, Wang H, Fang Z (2018) A facile way to prepare phosphorus-nitrogen-functionalized graphene oxide for enhancing the flame retardancy of epoxy resin. Compos Commun 10:97–102. https://doi.org/10.1016/j.coco.2018.08.001

    Article  Google Scholar 

  54. Wang H, Li X, Su F, Xie J, Xin Y, Zhang W, Liu C, Yao D, Zheng Y (2022) Core–shell ZIF67@ZIF8 modified with phytic acid as an effective flame retardant for improving the fire safety of epoxy resins. ACS Omega 7:21664–21674. https://doi.org/10.1021/acsomega.2c01545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yi S, Yan Z, Li X, Wang Z, Ning P, Zhang J, Huang J, Yang D, Du N (2023) Design of phosphorus-doped porous hard carbon/Si anode with enhanced Li-ion kinetics for high-energy and high-power Li-ion batteries. Chem Eng J 473:145161. https://doi.org/10.1016/j.cej.2023.145161

    Article  CAS  Google Scholar 

  56. Tao S, Xu W, Zheng J, Kong F, Cui P, Wu D, Qian B, Chen S, Song L (2021) Soybean roots-derived N, P Co-doped mesoporous hard carbon for boosting sodium and potassium-ion batteries. Carbon 178:233–242. https://doi.org/10.1016/j.carbon.2021.03.022

    Article  CAS  Google Scholar 

  57. Li XW, Sun JY, Zhao WX, Lai YJ, Yu X, Liu Y (2022) Intergrowth of graphite-like crystals in hard carbon for highly reversible Na-ion storage. Adv Funct Mater 32:2106980. https://doi.org/10.1002/adfm.202106980

    Article  CAS  Google Scholar 

  58. Chadha N, Sharma R, Saini P (2021) A new insight into the structural modulation of graphene oxide upon chemical reduction probed by Raman spectroscopy and X-ray diffraction. Carbon Letters 31:1125–1131. https://doi.org/10.1007/s42823-021-00234-5

    Article  Google Scholar 

  59. Zhang JT, Dai LM (2016) Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew Chem Int Ed 55:13296–13300. https://doi.org/10.1002/anie.201607405

    Article  CAS  Google Scholar 

  60. Ma L, Li ZB, Li JL, Dai Y, Qian C, Zhu YF, Wang H, Hui KN, Pan LK, Amin MA, Yamauchi Y, Mai WJ (2021) Phytic acid-induced nitrogen configuration adjustment of active nitrogen-rich carbon nanosheets for high-performance potassium-ion storage. J Mater Chem A 9:25445–25452. https://doi.org/10.1039/D1TA07196C

    Article  CAS  Google Scholar 

  61. Tang YH, Chen JJ, Mao ZY, Roth C, Wang DJ (2023) Highly N-doped carbon with low graphitic-N content as anode material for enhanced initial coulombic efficiency of lithium-ion batteries. Carbon Energy 5:e257. https://doi.org/10.1002/cey2.257

    Article  CAS  Google Scholar 

  62. Chen C, Huang Y, Meng Z, Lu M, Xu Z, Liu P, Li T (2020) N/O/P-rich three-dimensional carbon network for fast sodium storage. Carbon 170:225–235. https://doi.org/10.1016/j.carbon.2020.08.042

    Article  CAS  Google Scholar 

  63. Tao HC, Du SL, Zhang F, Xiong LY, Zhang YQ, Ma H, Yang XL (2018) Achieving a high-performance carbon anode through the P-O bond for lithium-ion batteries. ACS Appl Mater Interfaces 10:34245–34253. https://doi.org/10.1021/acsami.8b11243

    Article  CAS  PubMed  Google Scholar 

  64. Deng M, Dong W, Huang F (2023) High initial Coulombic efficiency hard carbon anodes enabled by facile surface annealing engineering. Chem Asian J 18:210. https://doi.org/10.1002/asia.202300210

    Article  CAS  Google Scholar 

  65. Gaikwad MM, Sharma CS (2020) In situ graphitized hard carbon xerogel: a promising high-performance anode material for Li-ion batteries. J Mater Res 35:2989–3003. https://doi.org/10.1557/jmr.2020.293

    Article  CAS  Google Scholar 

  66. Li X, Zhang S, Du J, Liu L, Mao C, Sun J, Chen A (2023) Strong interaction between phosphorus and wrinkle carbon sphere promote the performance of phosphorus anode material for lithium-ion batteries. Nano Res 16:9273–9279. https://doi.org/10.1007/s12274-023-5499-z

    Article  CAS  Google Scholar 

  67. Qian J, Qiao D, Ai X, Cao Y, Yang H (2012) Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem Commun 48:8931–8933. https://doi.org/10.1039/c2cc34388f

    Article  CAS  Google Scholar 

  68. Xie F, Xu Z, Guo ZY, Titirici MM (2020) Hard carbons for sodium-ion batteries and beyond. Prog Energy 2:042002. https://doi.org/10.1088/2516-1083/aba5f5

    Article  Google Scholar 

  69. Augustyn V, Come J, Lowe MA, Kim JW, Taberna P-L, Tolbert SH, Abruña HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522. https://doi.org/10.1038/nmat3601

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the support of the National Natural Science Foundation of China (22075082), Natural Science Foundation of Shanghai (No. 19ZR1413000, 13ZR1411900), Shanghai Alliance Plan (No. LM201881, LM201751), Shanghai Leading Academic Discipline Project (B502), and Shanghai Key Laboratory Project (08DZ2230500).

Author information

Authors and Affiliations

Authors

Contributions

CZ contributed to conceptualization, investigation, and methodology; HG contributed to writing—original draft and data curation; BZ contributed to conceptualization and data curation; ML, XT, and WG contributed to formal analysis and validation; YZ contributed to methodology; CZ contributed to conceptualization and project administration. All authors were involved in writing and editing the manuscript.

Corresponding authors

Correspondence to Chongjun Zhao or Chunhua Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 601 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Guo, H., Zhu, B. et al. Epoxy resin-derived N, P co-doping hard carbon with improved yield and anode performance in Li-ion battery. Ionics 30, 1971–1981 (2024). https://doi.org/10.1007/s11581-024-05387-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05387-7

Keywords

Navigation