Skip to main content
Log in

Calcium terephthalate/graphite composites as anode materials for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We have reported a conjugated carbonyl organic calcium terephthalate (CaTPA)-based organic/inorganic composite as anode material for lithium-ion batteries. The bulk CaTPA presents a low electronic conductivity leading to a large electrochemical polarization during charge/discharge process. Graphite is chosen as a conductive additive to improve its electrochemical performance via ball milling. The effect of graphite amount on the electrochemical properties of CaTPA is investigated. The composite with the weight ratio of 100:10 (CaTPA/graphite) (named CaTPAG10) shows the smallest electrochemical polarization, largest Li+ diffusion coefficient, and best rate capability, delivering discharge capacity of 233 mAhg−1 at current rate of 0.1 C and discharge voltage plateau at ~0.8 V. CaTPAG10 further exhibits good cycling performance, from 169 mAhg−1 down to 161 mAhg−1 after 50 cycles, giving a capacity retention of 95 % at 2 C compared with that of 89 % for the pristine CaTPA. To explore commercial application of CaTPA, a full cell with LiCoO2 and CaTPAG10 as a cathode and an anode material, respectively, is tested. The full cell reveals an operational voltage at 2.8 V and reversible capacity of about 138 mAhg−1 at 1 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Song Z, Xu T, Gordin ML, Jiang YB, Bae IT, Xiao Q, Zhan H, Liu J, Wang D (2012) Polymer-graphene nanocomposites as ultrafast-charge and discharge cathodes for rechargeable lithium batteries. Nano Lett 12(5):2205–2211

    Article  CAS  Google Scholar 

  2. Song Z, Zhou H (2013) Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energ Environ Sci 6(8):2280–2301

    Article  CAS  Google Scholar 

  3. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energ Environ Sci 4(9):3243–3262

    Article  CAS  Google Scholar 

  4. Zhao L, Wk W, Wang Ab Y, Zb CS, Ys Y (2011) A MC/AQ Parasitic composite as cathode material for lithium battery. J Electrochem Soc 158(9):A991–A996

    Article  CAS  Google Scholar 

  5. Zhang HQ, Deng QJ, Zhou AJ, Liu XQ, Li JZ (2014) Porous Li2C8H4O4 coated with N-doped carbon by using CVD as an anode material for Li-ion batteries. J Mater Chem A 2(16):5696–5702

    Article  CAS  Google Scholar 

  6. Park Y, Shin DS, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY (2012) Sodium terephthalate as an organic Anode material for Sodium ion batteries. Adv Mater 24(26):3562–3567

    Article  CAS  Google Scholar 

  7. Abouimrane A, Weng W, Eltayeb H, Cui Y, Niklas J, Poluektov O, Amine K (2012) Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energ Environ Sci 5(11):9632–9638

    Article  CAS  Google Scholar 

  8. Renault S, Brandell D, Gustafsson T, Edstrom K (2013) Improving the electrochemical performance of organic Li-ion battery electrodes. Chem Commun 49(19):1945–1947

    Article  CAS  Google Scholar 

  9. Armand M, Grugeon S, Vezin H, Laruelle S, Ribiere P, Poizot P, Tarascon JM (2009) Conjugated dicarboxylate anodes for Li-ion batteries. Nat Mater 8(2):120–125

    Article  CAS  Google Scholar 

  10. Wang S, Wang L, Zhang K, Zhu Z, Tao Z, Chen J (2013) Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett 13(9):4404–4409

    Article  CAS  Google Scholar 

  11. Huang ZL, Wang LP, Mou CX, Li JZ (2014) Magnesium terephthalate as an organic anode material for Sodium ion batteries. Acta Phys-Chim Sin 30(10):1787–1793

    CAS  Google Scholar 

  12. Gou L, Hao LM, Shi YX, Ma SL, Fan XY, Xu L, Li DL, Wang K (2014) One-pot synthesis of a metal-organic framework as an anode for Li-ion batteries with improved capacity and cycling stability. J Solid State Chem 210(1):121–124

    Article  CAS  Google Scholar 

  13. Nakahara K, Nakajima R, Matsushima T, Majima H (2003) Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells. J Power Sources 117(1–2):131–136

    Article  CAS  Google Scholar 

  14. Kim DW, Hwang IS, Kwon SJ, Kang HY, Park KS, Choi YJ, Choi KJ, Park JG (2007) Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett 7(10):3041–3045

    Article  CAS  Google Scholar 

  15. Konarova M, Taniguchi I (2009) Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties. Powder Technol 191(1–2):111–116

    Article  CAS  Google Scholar 

  16. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J (2009) Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS nano 3(4):907–914

    Article  CAS  Google Scholar 

  17. Luo C, Huang R, Kevorkyants R, Pavanello M, He H, Wang C (2014) Self-assembled organic nanowires for high power density lithium ion batteries. Nano Lett 14(3):1596–1602

    Article  CAS  Google Scholar 

  18. Mazaj M, Mali G, Rangus M, Zunkovic E, Kaucic V, Logar NZ (2013) Spectroscopic studies of Structural dynamics induced by heating and hydration: a case of calcium-terephthalate metal-organic framework. J Phys Chem C 117(15):7552–7564

    Article  CAS  Google Scholar 

  19. Wang LP, Zhang HQ, Mou CX, Cui QL, Deng QJ, Xue J, Dai XY, Li JZ (2014) Dicarboxylate CaC8H4O4 as a high-performance anode for Li-ion batteries. Nano Research. doi:10.1007/s12274-014-0666-x

  20. Heck HA (1981) Chemical urolithiasis 2. Thermodynamic aspects of bladder stone induction by terephthalic acid and dimethyl terephthalate in weanling Fischer-344 rats. Fundam Appl Toxicol 1(4):299–308

    Article  CAS  Google Scholar 

  21. Mazaj M, Mali G, Rangus M, Žunkovič E, Kaučič V, Zabukovec Logar N (2013) Spectroscopic studies of structural dynamics induced by heating and hydration: a case of calcium-terephthalate metal–organic framework. J Phys Chem C 117(15):7552–7564

    Article  CAS  Google Scholar 

  22. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  23. Zhang HQ, Deng QJ, Mou CX, Huang ZL, Wang Y, Zhou AJ, Li JZ (2013) Surface structure and high-rate performance of spinel Li4Ti5O12 coated with N-doped carbon as anode material for lithium-ion batteries. J Power Sources 239:538–545

    Article  CAS  Google Scholar 

  24. Liu T, Luo R, Yoon SH, Mochida I (2010) Anode performance of boron-doped graphites prepared from shot and sponge cokes. J Power Sources 195(6):1714–1719

    Article  CAS  Google Scholar 

  25. Shi Y, Wen L, Li F, Cheng HM (2011) Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. J Power Sources 196(20):8610–8617

    Article  CAS  Google Scholar 

  26. Dai XY, Wang LP, Xu J, Wang Y, Zhou AJ, Li JZ (2014) Improved electrochemical performance of LiCoO2 electrodes with ZnO coating by radio-frequency magnetron sputtering. ACS Appl Mater Interfaces 6:15853–15859

    Article  CAS  Google Scholar 

  27. Zhu GN, Liu HJ, Zhuang JH, Wang CX, Wang YG, Xia YY (2011) Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energ Environ Sci 4(10):4016–4022

    Article  CAS  Google Scholar 

  28. Seehra MS, Pavlovic AS (1993) X-ray-diffraction, thermal-expansion, electrical-conductivity, and optical microscope studies of coal-based graphites. Carbon 31(4):557–564

    Article  CAS  Google Scholar 

  29. Oloman C, Matte M, Lum C (1991) Electronic conductivity of graphite fiber fixed-bed elecrode. J Electrochem Soc 138(8):2330–2334

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSFC (Grant nos. 51033006, 51211140045, 11234013, 21473022) and the Fundamental Research Funds for the Central Universities (No. ZYGX2012Z003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingze Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, C., Wang, L., Deng, Q. et al. Calcium terephthalate/graphite composites as anode materials for lithium-ion batteries. Ionics 21, 1893–1899 (2015). https://doi.org/10.1007/s11581-014-1357-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1357-z

Keywords

Navigation