Skip to main content
Log in

Bioengineered Ag/NiO nanocomposites as advanced battery-supercapacitor electrodes for highly efficient symmetric hybrid devices

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present work, Ag/NiO nanocomposite was synthesized through the sol–gel process using Withania somnifera leaf extract (WSLE). UV–Vis absorption from ~ 250 to 500 nm confirms the formation of Ag/NiO nanocomposite. Spherical morphology was examined by scanning electron microscopy, and its elemental compositions were identified by energy dispersive absorption spectroscopy. The composite nature of Ag/NiO was confirmed through powder X-ray diffraction analysis. Density profiles of mid-bond electrons and bond length were also analysed with the help of Rietveld refinement method. Fourier transform infrared spectroscopy addressed the alkaloids as the main responsible biocompounds in the leaf extract of WSLE. The good thermal stability and superparamagnetic properties of the sample have been studied by TGA/DTA and VSM analysis. The supercapacitor Ag/NiO electrode reveals the specified capacitance of 262 F/g at a scan rate of 5 mV/s, and about 90.34% of retention was maintained after 5000 cycles. The battery-supercapacitor capacitive contribution of the electrode was estimated through the Transatti method. Battery type dominance kinetics on/from the surface of Ag/NiO electrode was analysed. Furthermore, admirable electrochemical properties of Ag/NiO have been observed in the symmetric hybrid device with a maximum energy density of 26 Wh/Kg and power density of 1580 W/Kg, demonstrating that bioengineered Ag/NiO electrodes are suitable for electrochemical energy storage applications. Intermolecular interactions are confirmed by the formation of critical points of electron density (3, -1) of the obtained complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The raw data of the present study will be available on request.

References

  1. Paul D, Mishra DK, Dordi A (2021) Commercializing battery storage for integration of renewable energy in India: an insight to business models. Int J Sustain Dev 16:783–789. https://doi.org/10.18280/ijsdp.160419

    Article  Google Scholar 

  2. Huili Y, Jingjia Z, Irum S, Muhammad A, Xi C, Bhargav A, Iftikhar H (2024) Nature-resembled nanostructures for energy storage/conversion applications. J Ind Eng Chem 129(53–68):1226–2086. https://doi.org/10.1016/j.jiec.2023.08.041

    Article  CAS  Google Scholar 

  3. Shaheen I, Ahmad KS, Jaffri SB, Ali D (2021) Biomimetic [MoO3@ZnO] semiconducting nanocomposites: chemo-proportional fabrication, characterization and energy storage potential exploration. Renew Energy 167:568–579. https://doi.org/10.1016/j.renene.2020.11.115

    Article  CAS  Google Scholar 

  4. Abbas N, Shaheen I, Ali I, Ahmad M, Khan SA, Qureshi A, Niazi JH, Imran M, Lamiel C, Ansari MZ, Hussain I (2022) Effect of growth duration of Zn0.76Co0.24S interconnected nanosheets for high-performance flexible energy storage electrode materials. Ceram Int 48:34251–34257. https://doi.org/10.1016/j.ceramint.2022.07.225

    Article  CAS  Google Scholar 

  5. Sridevi A, Balraj B, Senthilkumar N (2020) Synthesis of rGO/CuO/Ag ternary nanocomposites via hydrothermal approach for opto-electronics and supercapacitor applications. J Supercond Nov Magn 33:3501–3510. https://doi.org/10.1007/s10948-020-05594-z

    Article  CAS  Google Scholar 

  6. Pearline CL, Abel MJ, Pramothkumar A (2021) Investigation on structural, optical and electrochemical behavior of NiO/ZnMn2O4 ternary nanocomposites via two-step synthesis approach for supercapacitor application. Chem Pap 75:641–651. https://doi.org/10.1007/s11696-020-01258-3

    Article  CAS  Google Scholar 

  7. Amuthameena S, Dhayalini K, Balraj B, Siva C, Senthilkumar N (2021) Two step synthesis and electrochemical behavior of SnO2 nanomaterials for electrical energy storage devices. Inorg Chem Commun 131:108803. https://doi.org/10.1016/j.inoche.2021.108803

    Article  CAS  Google Scholar 

  8. Uma J, Banumathi S, Maheswaran R (2021) Green synthesis of ZnMn2O4 nanoparticles for supercapacitor applications. J Supercond Nov Magn 34:817–823. https://doi.org/10.1007/s10948-020-05792-9

    Article  CAS  Google Scholar 

  9. Paliwal MK, Meher SK (2019) Hierarchically organized ultrathin NiO nanofibers/highly defective-rGO heteronanocomposite:an advanced electrode material for asymmetric supercapacitors. Adv Mater Interfaces 6:1900889. https://doi.org/10.1002/admi.201900889

    Article  CAS  Google Scholar 

  10. Shaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas AG, Malik MA (2022) Sustainable synthesis of organic framework-derived ZnO nanoparticles for fabrication of supercapacitor electrode. Environ Technol 43:605–616. https://doi.org/10.1080/09593330.2020.1797899

    Article  CAS  PubMed  Google Scholar 

  11. Dar NJ, Ahmad M (2020) Neurodegenerative diseases and Withania somnifera (L.): An update. J Ethnopharmacol 256:112769. https://doi.org/10.1016/j.jep.2020.112769

    Article  CAS  PubMed  Google Scholar 

  12. Deshmukh MA, Kang BC, Ha TJ (2020) Non-enzymatic electrochemical glucose sensors based on polyaniline/reduced-graphene-oxide nanocomposites functionalized with silver nanoparticles. J Mater Chem C 8:5112–5123. https://doi.org/10.1039/C9TC06836H

    Article  CAS  Google Scholar 

  13. Shaheen I, Ahmad KS (2022) Biomimetic synthesis of highly reusable MoO3-based catalysts for fast degradation of dyes. JO Mater Innov. 2:255–268. https://doi.org/10.54738/MI.2022.21001

    Article  CAS  Google Scholar 

  14. Alsubki R, Tabassum H, Abudawood M, Rabaan AA, Alsobaie SF, Ansar S (2021) Green synthesis, characterization, enhanced functionality and biological evaluation of silver nanoparticles based on coriander sativum. Saudi J Biol Sci 28:2102–2108. https://doi.org/10.1016/j.sjbs.2020.12.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar R, Youssry SM, Soe HM, Abdel-Galeil MM, Kawamura G, Matsuda A (2020) Honeycomb-like open-edged reduced-graphene-oxide-enclosed transition metal oxides (NiO/Co3O4) as improved electrode materials for high-performance supercapacitor. J Energy Storage 30:101539. https://doi.org/10.1016/j.est.2020.101539

    Article  Google Scholar 

  16. Shaheen I, Hussain I, Zahra T, Javed MS, Shah SSA, Khan K, Hanif MB, Assiri MA, Said Z, Arifeen WU, Akkinepally B, Zhang K (2023) Recent advancements in metal oxides for energy storage materials: design, classification, and electrodes configuration of supercapacitor. J Energy Storage 72:108719. https://doi.org/10.1016/j.est.2023.108719

    Article  Google Scholar 

  17. Shaheen I, Ahmad KS, Iram S Phyto-functionalization of MoO3-ZnMoO4 composite for the catalytic wet oxidation of methyl orange under dark ambient conditions. JO Mater Innov 65–73. https://doi.org/10.54738/MI.2022.3601

  18. Chinnaiah K, Kannan K, Sivaganesh D, Gurushankar K (2022) Electrochemical performance and charge density distribution analysis of Ag/NiO nanocomposite synthesized from withania somnifera leaf extract. Inorg Chem Commun 141:109580. https://doi.org/10.1016/j.inoche.2022.109580

    Article  CAS  Google Scholar 

  19. Chinnaiah K, Krishnamoorthi R, Kannan K, Sivaganesh D, Saravanakumar S, Theivasanthi T, Palko N, Grishina M, Maik V, Gurushankar K (2022) Ag nanoparticles synthesized by Datura metel L. Leaf extract and their charge density distribution, electrochemical and biological performance. Chem Phys Lett 807:140083. https://doi.org/10.1016/j.cplett.2022.140083

    Article  CAS  Google Scholar 

  20. Petrícek V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Zeitschrift Fur Krist 229:345–352. https://doi.org/10.1515/zkri-2014-1737

    Article  CAS  Google Scholar 

  21. Sivaganesh D, Saravanakumar S, Sivakumar V, Rajajeyaganthan R, Arunpandian M, Nandha Gopal J, Thirumalaisamy TK (2020) Surfactants-assisted synthesis of znwo4 nanostructures: a view on photocatalysis, photoluminescence and electron density distribution analysis. Mater Charact 159:110035. https://doi.org/10.1016/j.matchar.2019.110035

    Article  CAS  Google Scholar 

  22. Grishina MA, Potemkin V (2018) Capabilities of structure modeling for azaheterocycles and the comparison to FTIR spectroscopy data. Bull South Ural State Univ 10:25–36. https://doi.org/10.14529/chem180103

    Article  Google Scholar 

  23. Potemkin V, Palko N, Grishina M (2019) Quantum theory of atoms in molecules for photovoltaics. Sol Energy 190:475–487. https://doi.org/10.1016/j.solener.2019.08.048

    Article  ADS  CAS  Google Scholar 

  24. Potemkin V, Grishina M (2008) Principles for 3D/4D QSAR classification of drugs. Drug Discov Today 13:952–959. https://doi.org/10.1016/j.drudis.2008.07.006

    Article  CAS  PubMed  Google Scholar 

  25. Potemkin V, Grishina M (2018) Grid-based technologies for in silico screening and drug design. Curr Med Chem 25:3526–3537. https://doi.org/10.2174/0929867325666180309112454

    Article  CAS  PubMed  Google Scholar 

  26. Palko N, Grishina M, Potemkin V (2021) Electron density analysis of SARS-CoV-2RNA dependent RNA polymerase complexes. Molecules 26:3960. https://doi.org/10.3390/molecules26133960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Palko N, Grishina M (2022) Preferred conformations of osmium cluster in terms of electron density. Chem Phys Lett 809:140174. https://doi.org/10.1016/j.cplett.2022.140174

    Article  CAS  Google Scholar 

  28. Rimac H, Grishina M, Potemkin V (2020) Electron density analysis of CDK complexes using the AlteQ method. Future Med Chem 12:1387–1397. https://doi.org/10.4155/fmc-2020-0076

    Article  CAS  PubMed  Google Scholar 

  29. Rimac H, Grishina M, Potemkin V (2021) Use of the complementarity principle in docking procedures: a new approach for evaluating the correctness of binding poses. J Chem Inf Model 61:1801–1813. https://doi.org/10.1021/acs.jcim.0c01382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Momma K, Ikeda T, Belik AA, Izumi F (2013) Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting. Powder Diffr 28:184–193. https://doi.org/10.1017/S088571561300002X

    Article  ADS  CAS  Google Scholar 

  31. Vijaya Kumar P, Jafar Ahamed A, Karthikeyan M (2019) Synthesis and characterization of NiO nanoparticles by chemical as well as green routes and their comparisons with respect to cytotoxic effect and toxicity studies in microbial and MCF-7 cancer cell models. SN Appl Sci 1:1083. https://doi.org/10.1007/s42452-019-1113-0

    Article  CAS  Google Scholar 

  32. Issaabadi Z, Nasrollahzadeh M, Sajadi SM (2017) Efficient catalytic hydration of cyanamides in aqueous medium and in the presence of naringin sulfuric acid or green synthesized silver nanoparticles by using gongronema latifolium leaf extract. J Colloid Interface Sci 503:57–67. https://doi.org/10.1016/j.jcis.2017.04.095

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Souza PR, Vilsinski BH, De Oliveira AC, Berton SBR, Nunes CS, Kipper MJ, Schrekker HS, Martins AF, Muniz EC (2021) Chitosan/heparin blends in ionic liquid produce polyelectrolyte complexes that quickly adsorb citrate-capped silver nanoparticles, forming bactericidal composites. J Mol Liq 330:115548. https://doi.org/10.1016/j.molliq.2021.115548

    Article  CAS  Google Scholar 

  34. Manjari G, Parthiban A, Saran S (2020) Sustainable utilization of molasses towards green synthesis of silver nanoparticles for colorimetric heavy metal sensing and catalytic applications. J Clust Sci 31:1137–1145. https://doi.org/10.1007/s10876-019-01721-6

    Article  CAS  Google Scholar 

  35. Chinnaiah K, Maik V, Kannan K, Potemkin V, Grishina M, Gohulkumar M, Tiwari R, Gurushankar K (2022) Experimental and theoretical studies of green synthesized Cu2O nanoparticles using Datura metel L. J Fluoresc 32:559–568. https://doi.org/10.1007/s10895-021-02880-4

    Article  CAS  PubMed  Google Scholar 

  36. Feroze N, Arshad B, Younas M, Afridi MI, Saqib S, Ayaz A (2020) Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc Res Tech 83:72–80. https://doi.org/10.1007/s11837-015-1587-1

    Article  CAS  PubMed  Google Scholar 

  37. Shi C, Pan LU, Wang C, He YI, Wu Y (2015) Facile preparation of Ag/NiO composite nanosheets and their antibacterial activity. JOM 68:324–329. https://doi.org/10.1007/s11837-015-1587-1

    Article  CAS  Google Scholar 

  38. Sabouri Z, Akbari A, Ali H, Alireza H, Majid H (2019) Eco-friendly biosynthesis of nickel oxide nanoparticles mediated by okra plant extract and investigation of their photocatalytic, magnetic, cytotoxicity, and antibacterial properties. J Clust Sci 30:1425–1434. https://doi.org/10.1007/s10876-019-01584-x

    Article  CAS  Google Scholar 

  39. Suvith VS, Devu VS, Philip D (2019) Facile synthesis of SnO2/NiO nano-composites: structural, magnetic and catalytic properties. Ceram Int 46:786–794. https://doi.org/10.1016/j.ceramint.2019.09.033

    Article  CAS  Google Scholar 

  40. He X, Xu Y, Yao X, Zhang C, Pu Y, Wang X, Mao W, Du Y, Zhong W (2019) Large exchange bias and enhanced coercivity in strongly-coupled Ni/NiO binary nanoparticles. RSC Adv 9:30195–30206. https://doi.org/10.1039/C9RA03242H

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suresh R, Ponnuswamy V, Sankar C, Manickam M, Venkatesan S, Perumal S (2017) NiO nanoflakes: effect of anions on the structural, optical, morphological and magnetic properties. J Magn Magn Mater 441:787–794. https://doi.org/10.1016/j.jmmm.2017.05.069

    Article  ADS  CAS  Google Scholar 

  42. Zhou LX, Yang YY, Zhu HL, Zheng YQ (2021) In situ synthesis of Ag/NiO derived from hetero-metallic MOF for supercapacitor application. Chem Pap 75:1795–1807. https://doi.org/10.1007/s11696-020-01431-8

    Article  CAS  Google Scholar 

  43. Jayababu N, Jo S, Kim Y, Kim D (2021) Preparation of NiO decorated CNT/ZnO core-shell hybrid nanocomposites with the aid of ultrasonication for enhancing the performance of hybrid supercapacitors. Ultrason Sonochem 71:105374. https://doi.org/10.1016/j.ultsonch.2020.105374

    Article  CAS  PubMed  Google Scholar 

  44. Gao X, Zhang H, Guo E, Yao F, Wang Z, Yue H (2021) Hybrid two-dimensional nickel oxide-reduced graphene oxide nanosheets for supercapacitor electrodes. Microchem J 164:105979. https://doi.org/10.1016/j.microc.2021.105979

    Article  CAS  Google Scholar 

  45. Ahmad R, Iqbal N, Baig NM, Noor T, Ali G, Gul IH (2020) ZIF-67 derived nitrogen doped CNTs decorated with sulfur and Ni(OH)2 as potential electrode material for high-performance supercapacitors. Electrochim Acta 364:137147. https://doi.org/10.1016/j.electacta.2020.137147

    Article  CAS  Google Scholar 

  46. Gao X, Wang W, Bi J, Chen Y, Hao X, Sun X, Zhang J (2018) Morphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitor. Electrochim Acta 296:181–189. https://doi.org/10.1016/j.electacta.2018.11.054

    Article  CAS  Google Scholar 

  47. Asaithambi S, Sakthivel P, Karuppaiah M, Balamurugan K, Yuvakkumar R, Thambidurai M, Ravi G (2021) Synthesis and characterization of various transition metals doped SnO2@MoS2 composites for supercapacitor and photocatalytic applications. J Alloys Compd 853:157060. https://doi.org/10.1016/j.jallcom.2020.157060

    Article  CAS  Google Scholar 

  48. Adhikari S, Selvaraj S, Ji S, Kim D (2020) Encapsulation of Co3O4 nanocone arrays via ultrathin NiO for superior performance asymmetric supercapacitors. Small 16:2005414. https://doi.org/10.1002/smll.202005414

    Article  CAS  Google Scholar 

  49. Kwak C, Ko TH, Lee HJ, Kim H, Kim B (2020) Flexible transparent symmetric solid-state supercapacitors based on NiO-decorated nano fiber-based composite electrodes with excellent mechanical flexibility and cyclability. ACS Appl Energy Mater 3:2394–2403. https://doi.org/10.1021/acsaem.9b02073

    Article  CAS  Google Scholar 

  50. Hu Q, Gu Z, Zheng X, Zhang X (2016) Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chem Eng J 304:223–231. https://doi.org/10.1016/j.cej.2016.06.097

    Article  CAS  Google Scholar 

  51. Padmanathan N, Shao H, McNulty D, Dwyer C, Razeeba KM (2016) Hierarchical NiO-In2O3 microflower (3D)/nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability. J Mater Chem A 4:4820–4830. https://doi.org/10.1039/C5TA10407F

    Article  CAS  Google Scholar 

  52. Liu X, Wang J, Yang G (2017) Transparent, flexible, and high-performance supercapacitor based on ultrafine nickel cobaltite nanospheres. Appl Phy A 123:1–11. https://doi.org/10.1007/s00339-017-1085-0

    Article  ADS  CAS  Google Scholar 

  53. Kumar RS, Jeyakumar SJ (2017) Influence of molar concentration on structural, optical and magnetic properties of NiO nanoparticles. J Mater Sci Mater Electron 28:15668–15675. https://doi.org/10.1007/s10854-017-7456-7

    Article  CAS  Google Scholar 

  54. Bharathy G, Raji P (2017) Pseudocapacitance of Co doped NiO nanoparticles and its room temperature ferromagnetic behavior. Phys B Phys Condens Matter 530:75–81. https://doi.org/10.1016/j.physb.2017.10.106

    Article  ADS  CAS  Google Scholar 

  55. Nazir Z, Ayesha K, Hina U, Riffat N, Saira S, Shahza R (2020) Dielectric and magnetic properties of dilute magnetic semiconductors Ag-doped ZnO thin films. Appl Phys A 126:559. https://doi.org/10.1007/s00339-020-03748-3

    Article  CAS  Google Scholar 

  56. Dhas SD, Maldar PS, Patil MD, Nagare AB, Waikar MR, Sonkawade RG, Moholkar AV (2020) Synthesis of NiO nanoparticles for supercapacitor application as an efficient electrode material. Vacuum 181:109646. https://doi.org/10.1016/j.vacuum.2020.109646

    Article  ADS  CAS  Google Scholar 

  57. Lamba P, Singh P, Singh P, Kumar A, Singh P, Bharti KY, Gupta M (2021) Bioinspired synthesis of nickel oxide nanoparticles as electrode material for supercapacitor applications. Ionics 27:5263–5276. https://doi.org/10.1007/s11581-021-04245-0

    Article  CAS  Google Scholar 

  58. Randive SG, Lokhande BJ (2023) Spray pyrolyzed hydrophilic nickel oxide electrodes with nano-granular morphology for a symmetric supercapacitor device. J Alloys and Compd 944:169046. https://doi.org/10.1016/j.jallcom.2023.169046

    Article  CAS  Google Scholar 

  59. Shaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas AG, Malik MA (2021) Modified sol-gel synthesis of Co3O4 nanoparticles using organic template for electrochemical energy storage. Energy 218:119502. https://doi.org/10.1016/j.energy.2020.119502

    Article  CAS  Google Scholar 

  60. Hou XY, Yan XL, Wang X, Zhai QG (2018) Tuning the porosity of mesoporous NiO through calcining isostructural Ni-MOFs toward supercapacitor applications. J Solid State Chem 263:72–78. https://doi.org/10.1016/j.jssc.2018.04.009

    Article  ADS  CAS  Google Scholar 

  61. Shaheen I, Ahmad KS, Zequine C, Gupta RK, Thomasc AG, Malikc MA (2020) Green synthesis of ZnO–Co3O4 nanocomposite using facile foliar fuel and investigation of its electrochemical behaviour for supercapacitors. New J Chem 44:18281–18292. https://doi.org/10.1039/D0NJ03430D

    Article  CAS  Google Scholar 

  62. Shaheena I, Ahmad KS, Zequineb C, Guptab RK, Thomas AG, Malikc MA (2021) Facile ZnO-based nanomaterial and its fabrication as a supercapacitor electrode: synthesis, characterization and electrochemical studies. RSC Adv 11:23374–23384. https://doi.org/10.1039/D1RA04341B

    Article  ADS  Google Scholar 

  63. Sinprachim T, Phumying S, Maensiri S (2016) Electrochemical energy storage performance of electrospun AgOx-MnOx/CNF Composites. J Alloys Compd 677:1–11. https://doi.org/10.1016/j.jallcom.2016.03.174

    Article  CAS  Google Scholar 

  64. Shaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas AG, Malik MA (2020) Functionalization of MoO3NiMoO4 nanocomposite using organic template for energy storage application. J Energy Storage 29:101309. https://doi.org/10.1016/j.est.2020.101309

    Article  Google Scholar 

  65. Yadav MS, Tripathi SK (2017) Synthesis and characterization of nanocomposite NiO/activated charcoal electrodes for supercapacitor application. Ionics 23:2919–2930. https://doi.org/10.1007/s11581-017-2026-9

    Article  CAS  Google Scholar 

  66. Palko N, Potemkin V, Grishina M (2020) Theoretical study of the surface structure of anatase nanoparticles: effect on dye adsorption and photovoltaic properties. New J Chem 44:17267–17276. https://doi.org/10.1039/D0NJ03213A

    Article  CAS  Google Scholar 

  67. Shchelokov A, Palko N, Potemkin V, Grishina M, Morozov R, Korina E, Uchaev D, Krivtsov I, Bol’shakov O (2019) Adsorption of native amino acids on nanocrystalline TiO2: physical chemistry, QSPR, and theoretical modeling. Langmuir 35:538–550. https://doi.org/10.1021/acs.langmuir.8b02007

    Article  CAS  PubMed  Google Scholar 

  68. Korina E, Naifert S, Palko N, Grishina M, Potemkin V, Morozov R, Adawy A, Merono R, Avdin V, Schelokov A, Popov V, Bol’shakov O (2021) Probing adsorption of dipeptides on anatase in H2O and D2O: thermodynamics and molecular geometry. ChemPhysChem 22:2550–2561. https://doi.org/10.1002/cphc.202100540

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors (KC and KG) are thanks to Kalasalingam Academy of Research Education, Krishnankoil, Tamil Nadu, India, for providing the necessary research facilities.

Author information

Authors and Affiliations

Authors

Contributions

KC: methodology, formal analysis, visualization, writing—original draft preparation. KK: conceptualization, methodology, supervision, reviewing and editing. NP: methodology, formal analysis, visualization and theoretical validation. MG: formal analysis, theoretical validation, and supervision. LG: formal analysis and visualization. KG: conceptualization; methodology; supervision; writing, original draft; reviewing and editing.

Corresponding author

Correspondence to Krishnamoorthy Gurushankar.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnaiah, K., Kannan, K., Palko, N. et al. Bioengineered Ag/NiO nanocomposites as advanced battery-supercapacitor electrodes for highly efficient symmetric hybrid devices. Ionics 30, 1691–1707 (2024). https://doi.org/10.1007/s11581-023-05361-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05361-9

Keywords

Navigation