Skip to main content
Log in

Experimental and Theoretical Studies of Green Synthesized Cu2O Nanoparticles Using Datura Metel L

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In biomedical applications, Cu2O nanoparticles are of great interest. The bioengineered route is eco-friendly for the synthesis of nanoparticles. Therefore, in the present study, there is an attempt to synthesis Cu2O nanoparticles using Datura metel L. The synthesized nanoparticles were characterized by UV–Vis, XRD, and FT-IR. UV–Vis results suggest the presence of hyoscyamine, atropine in Datura metel L, and also, nanoparticles formation has been confirmed by the presence of absorption peak at 790 nm. The average crystallite size (19.56 nm) was obtained by XRD. FT-IR was also used to confirm the different functional groups. Fourier Power Spectrum was also employed to examine the synthesized nanomaterials spectrum data to emphasize the peak of the prominent frequencies. Density functional theory (DFT) was also utilized to assess the energy of the substance over time, which appears to indicate a stable molecule. Furthermore, calculated energies, thermodynamic properties (such as enthalpies, entropies, and Gibbs-free energies), modeled structures of complexes, crystals, and clusters, and predicted yields, rates, and regio- and stereospecificity of reactions were all in good agreement with experimental results. Overall, the results show that the successful production of Cu2O nanoparticles with Datura metel L. corresponds to theoretical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated during this study are included in this published article.

References

  1. Karthik K, Qadir AM (2019) Synthesis and Crystal Structure of a New Binuclear Copper(II) Carboxylate Complex as a Precursor for Copper(II) Oxide Nanoparticles. J Struct Chem 60:1126–1132. https://doi.org/10.1134/S002247661907014X

    Article  CAS  Google Scholar 

  2. Kannan K, Radhika D, Vijayalakshmi S, Sadasivuni KK, Ojiaku AA, Verma U (2020) Facile fabrication of CuO nanoparticles via microwave-assisted method: photocatalytic, antimicrobial and anticancer enhancing performance. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1733543

    Article  Google Scholar 

  3. Kannan K, Radhika D, Nikolova MP, Andal V, Sadasivuni KK, Krishna LS (2020) Facile microwave-assisted synthesis of metal oxide CdO-CuO nanocomposite: Photocatalytic and antimicrobial enhancing properties. Optik 218:165112. https://doi.org/10.1016/j.ijleo.2020.165112

    Article  CAS  Google Scholar 

  4. Azhar W, Khan AR, Muhammad N, Liu B, Song G, Hussain A, Yasin MU, Khan S, Munir R, Gan Y (2020) Ethylene mediates CuO np-induced ultrastructural changes and oxidative stress in arabidopsis thaliana leaves. Environ Sci Nano 7:938–953. https://doi.org/10.1039/C9EN01302D

    Article  CAS  Google Scholar 

  5. Rajasekaran S, Muthuvel A, Kannan K, Chinnaiah K, Maik V, Gohulkumar M, Gurushankar K (2021) Synthesis and characterization of undoped and mn-doped copper oxide nanoparticles. Macromol Symp 400:2100122. https://doi.org/10.1002/masy.202100122

    Article  CAS  Google Scholar 

  6. Jadhav MS, Kulkarni S, Raikar P, Barretto DA, Vootlac SK, Raikar US (2018) Green biosynthesis of CuO & Ag–CuO nanoparticles from malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities. New J Chem 42:204–213. https://doi.org/10.1039/C7NJ02977B

    Article  CAS  Google Scholar 

  7. Kargar A, Jing Y, Kim SJ, Riley CT, Pan X, Wang D (2013) ZnO/CuO Heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 7(12):11112–11120. https://doi.org/10.1021/nn404838n

    Article  CAS  PubMed  Google Scholar 

  8. Wongrakpanich A, Mudunkotuwa IA, Geary SM, Morris AS, Mapuskar KA, Spitz DR, Grassian VH, Salem AK (2016) Size-dependent cytotoxicity of copper oxide nanoparticles in lung epithelial cells. Environ Sci Nano 3:365–374. https://doi.org/10.1039/C5EN00271K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Awed AS, El-Ghamaz NA, El-Nahass MM, Zeyada HM (2019) Linear and nonlinear optical properties of alizarin red S thin films. Indian J Phys 93:861–868. https://doi.org/10.1007/s12648-018-01359-6

    Article  CAS  Google Scholar 

  10. Karthik Kannan D, Radhika DG, Lakkaboyana SK, Sadasivuni KK, Gurushankar K, Hanafiah MM (2021) Photocatalytic and antimicrobial properties of microwave synthesized mixed metal oxide nanocomposite. Inorg Chem Commun 125:108429. https://doi.org/10.1016/j.inoche.2020.108429

    Article  CAS  Google Scholar 

  11. Gurushankar K, Rimac H, Potemkin V, Grishina M (2021) Investigation of the newly characterized baimantuoluoamide a and baimantuoluoamide b alkaloids as potential cyclin-dependent kinase 4 (CDK4) inhibitors using molecular docking and molecular dynamics simulations. J Mol Struct 1230:129925. https://doi.org/10.1016/j.molstruc.2021.129925

    Article  CAS  Google Scholar 

  12. Siddiqui VU, Ansari A, Chauhan R, Siddiqi WA (2021) Green synthesis of copper oxide (CuO) nanoparticles by punica granatum peel extract. Materials Today Proceedings 36:751–755. https://doi.org/10.1016/j.matpr.2020.05.504

    Article  CAS  Google Scholar 

  13. Nasir B, Baig MW, Majid M, Ali SM, Khan MJI, Kazmi STB, Haq I (2020) Preclinical anticancer studies on the ethyl acetate leaf extracts of Datura Stramonium and Datura Inoxia. BMC Complement Med Ther 20:188. https://doi.org/10.1186/s12906-020-02975-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wan L, Zhou Q, Wang X, Wood TE, Wang L, Duchesne PN, Guo J, Yan X, Xia M, Li YF, Jelle AA, Ulmer U, Jia J, Li T, Sun W, Ozin GA (2019) Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat Catal 2:889–898. https://doi.org/10.1038/s41929-019-0338-z

    Article  CAS  Google Scholar 

  15. Wan X, Wang J, Zhub L, Tang J (2014) Gas sensing properties of Cu2O and its particle size and morphology-dependent gas-detection sensitivity. Journal of Materials Chemistry A 2:13641–13647. https://doi.org/10.1039/C4TA02659D

    Article  CAS  Google Scholar 

  16. Muthukrishnaraj A, Al-Zahrani SA, Al Otaibi A, Kalaivani SS, Manikandan A, Balasubramanian N, Bilgrami AL, Ahamed MAR, Khan A, Asiri AM, Balasubramanian N (2021) Enhanced photocatalytic activity of Cu2O Cabbage/RGO nanocomposites under visible light irradiation. Polymers 13:1712. https://doi.org/10.3390/polym13111712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koiki BA, Arotiba OA (2020) Cu2O as an emerging semiconductor in photocatalytic and photoelectrocatalytic treatment of water contaminated with organic substances: a review. RSC Adv 10:36514–36525. https://doi.org/10.1039/D0RA06858F

    Article  CAS  Google Scholar 

  18. Ramesh C, HariPrasad M, Ragunathan V (2011) Effect of Arachis hypogaea L. leaf extract on Barfoed’s Solution; Green synthesis of Cu2O nanoparticles and its antibacterial effect. Curr Nanosci 7:995–999. https://doi.org/10.2174/157341311798220781

    Article  CAS  Google Scholar 

  19. Abboud Y, Saffaj T, Chagraoui A, Bouari AE, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4:571–576. https://doi.org/10.1007/s13204-013-0233-x

    Article  CAS  Google Scholar 

  20. Kerour A, Boudjadar S, Bourzami R, Allouche B (2018) Eco-friendly synthesis of cuprous oxide (Cu2O) nanoparticles and improvement of their solar photocatalytic activities. J Solid State Chem 263:79–83. https://doi.org/10.1016/j.jssc.2018.04.010

    Article  CAS  Google Scholar 

  21. Haunschild R, Barth A, French BA (2019) Comprehensive analysis of the history of DFT based on the bibliometric method RPYS. J Cheminform 11:72. https://doi.org/10.1186/s13321-019-0395-y

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fermi E (1928) Eine Statistische Methode Zur Bestimmung Einiger Eigenschaften Des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z Physik 48:73–79. https://doi.org/10.1007/BF01351576

    Article  CAS  Google Scholar 

  23. Haunschild R, Barth A, Marx W (2016) Evolution of DFT studies in view of a scientometric perspective. J Cheminform 8:52. https://doi.org/10.1186/s13321-016-0166-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ciaccio EJ, Biviano AB, Whang W, Coromilas J, Garan H (2011) A new transform for the analysis of complex fractionated atrial electrograms. BioMed Eng OnLine 10:35. https://doi.org/10.1186/1475-925X-10-35

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mesgaran SD, Eggert A, Höckels P, Derno M, Kuhla B (2020) The use of milk Fourier transform mid-infrared spectra and milk yield to estimate heat production as a measure of efficiency of dairy cows. J Animal Sci Biotechnol 11:43. https://doi.org/10.1186/s40104-020-00455-0

    Article  CAS  Google Scholar 

  26. Luo Z, Jiang H, Li D, Hu L, Geng W, Wei P, Ouyang P (2014) Improved photocatalytic activity and mechanism of Cu2O/N–TiO2 prepared by a two-step method. RSC Adv 4:17797–17804. https://doi.org/10.1039/C3RA47973K

    Article  CAS  Google Scholar 

  27. Ramalechume C, Shamili P, Krishnaveni R, Swamidoss CMA (2020) Synthesis of copper oxide nanoparticles using tree gum extract, its spectral characterization, and a study of its anti- bactericidal properties. Materials Today Proceedings 33:4151–4155. https://doi.org/10.1016/j.matpr.2020.06.587

    Article  CAS  Google Scholar 

  28. Singh RS, Rangari VK, Sanagapalli S, Jayaraman V, Mahendra S, Singh VP (2004) Nano-structured CdTe, CdS and TiO2 for thin film solar cell applications. Sol Energy Mater Sol Cells 82:315–330. https://doi.org/10.1016/j.solmat.2004.02.006

    Article  CAS  Google Scholar 

  29. Grad L, Novotny Z, Hengsberger M, Osterwalder J (2020) Influence of surface defect density on the ultrafast hot carrier relaxation and transport in Cu2O photoelectrodes. Sci Rep 10:10686. https://doi.org/10.1038/s41598-020-67589-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kannan K, Radhika D, Gnanasangeetha D, Krishna LS, Gurushankar K (2021) Y3+ and Sm3+ co-doped mixed metal oxide nanocomposite: Structural, electrochemical, photocatalytic, and antibacterial properties. Applied Surface Science Advances 4:100085. https://doi.org/10.1016/j.apsadv.2021.100085

    Article  Google Scholar 

  31. Sasidharan D, Namitha TR, Johnson SP, Jose V, Mathew P (2020) Synthesis of silver and copper oxide nanoparticles using myristica fragrans fruit extract: antimicrobial and catalytic applications. Sustain Chem Pharm 16:100255. https://doi.org/10.1016/j.scp.2020.100255

    Article  Google Scholar 

  32. Sarkar J, Chakraborty N, Chatterjee A, Bhattacharjee A, Dasgupta D, Acharya K (2020) Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in lens culinaris. Nanomaterials 10:312. https://doi.org/10.3390/nano10020312

    Article  CAS  PubMed Central  Google Scholar 

  33. Anand GT, Sundaram SJ, Kanimozhi K, Nithiyavathi R, Kaviyarasu K (2021) Microwave assisted green synthesis of CuO nanoparticles for environmental applications. Materials Today Proceedings 36:427–434. https://doi.org/10.1016/j.matpr.2020.04.881

    Article  CAS  Google Scholar 

  34. Sukharev YI, Potemkin VA, Markov BA (2001) Autowave processes of forming gels as a cause of the coloring of oxyhydrate gels (the chromatic effect) of some rare earth metals (yttrium, gadolinium). Colloids Surf A 194:75–84. https://doi.org/10.1016/S0927-7757(01)00757-9

    Article  CAS  Google Scholar 

  35. Potemkin VA, Maksakov VA, Kirin VP (2003) Conformational states of triosmium clusters with aminoacid ligands: a theoretical study. J Struct Chem 44:741–747. https://doi.org/10.1023/B:JORY.0000029809.88411.8b

    Article  CAS  Google Scholar 

  36. Potemkin VA, Krasnov VP, Levit GL, Bartashevich EV, Andreeva IN, Kuzminsky MB, Anikin NA, Charushin VN, Chupakhin ON (2004) Kinetic resolution of (±)-2,3-dihydro-3-methyl-4H-1,4-benzoxazine in the reaction with (S)-naproxen chloride: a theoretical study. Mendeleev Commun 14:69–70. https://doi.org/10.1070/MC2004v014n02ABEH001887

    Article  CAS  Google Scholar 

  37. Potemkin VA, Maksakov VA, Kirin VP (2004) Theoretical study of the conformations of triosmium clusters with a chiral carane ligand. J Struct Chem 45:405–409. https://doi.org/10.1007/s10947-005-0006-9

    Article  CAS  Google Scholar 

  38. Potemkin VA, Maksakov VA, Korenev VS (2005) Theoretical study of the conformational states of triosmium clusters with a chiral pinane ligand. J Struct Chem 46:43–48. https://doi.org/10.1007/s10947-006-0007-3

    Article  CAS  Google Scholar 

  39. Sukharev YI, Avdin VV, Lymar AA, Belkanova MY, Potemkin VA (2006) Directions in structure formation of oxyhydrate gels of zirconium and rare earth elements. J Struct Chem 47:151–155. https://doi.org/10.1007/s10947-006-0280-1

    Article  CAS  Google Scholar 

  40. Aladko EY, Ancharov AI, Goryainov SV, Kurnosov AV, Larionov EG, Likhacheva AY, Manakov AY, Potemkin VA, Sheromov MA, Teplykh AE, Voronin VI, Zhurko FV (2006) New type of phase transformation in gas hydrate forming system at high pressures. Some experimental and computational investigations of clathrate hydrates formed in the SF6−H2O system. J Phys Chem B 110:21371–21376. https://doi.org/10.1021/jp061698r

    Article  CAS  PubMed  Google Scholar 

  41. Grishina MA, Potemkin VA, Bartashevich EV, Sinyaev AN, Rusinov GL, Latosh NI, Ganebnykh IN, Koryakova OV, Ishmetova RI (2006) Modeling of 1,2,4,5-tetrazine complexes with organic amines. J Struct Chem 47:1155–1160. https://doi.org/10.1007/s10947-006-0438-x

    Article  CAS  Google Scholar 

  42. Potemkin VA, Maksakov VA, Korenev VS (2007) Theoretical study of the conformational states of triosmium clusters with a chiral μ-1-NH pinane ligand. J Struct Chem 48:225–230. https://doi.org/10.1007/s10947-007-0036-6

    Article  CAS  Google Scholar 

  43. Avdin VV, Lymar AA, Batist AV, Nikitin EA, Belkanova MY, Potemkin VA (2007) Structure formation in heavy metal oxyhydrates at low rates of gel formation. J Struct Chem 48:747–752. https://doi.org/10.1007/s10947-007-0114-9

    Article  CAS  Google Scholar 

  44. Korenev VS, Kirin VP, Maksakov VA, Virovets AV, Tkachev SV, Potemkin VA, Agafontsev AM, Tkachev AV (2007) Triosmium cluster with the bridging aminooxime derivative of pinane: synthesis, crystal structure and conformational analysis. Russ J Coord Chem 33:594–600. https://doi.org/10.1134/S1070328407080088

    Article  CAS  Google Scholar 

  45. Shchur IV, Khudina OG, Burgart YV, Saloutin VI, Grishina MA, Potemkin VA (2007) Synthesis, structure, and complexing ability of fluoroalkyl-containing 2,2′-(biphenyl-4,4′-diyldihydrazono)-bis(1,3-dicarbonyl) compounds. Russ J Org Chem 43:1781–1787. https://doi.org/10.1134/S107042800712007X

    Article  CAS  Google Scholar 

  46. Grishina MA, Potemkin VA, Matern AI (2008) Theoretical study of acridane oxidation reactions. J Struct Chem 49:7–12. https://doi.org/10.1007/s10947-008-0002-y

    Article  CAS  Google Scholar 

  47. Maksakov VA, Pervukhina NV, Podberezskaya NV, Afonin MY, Potemkin VA, Kirin VP (2008) X-ray and conformation analysis of the new trinuclear cluster of osmium Os3(μ, η2-OCC6H5)(CO)9. J Struct Chem 49:894–900. https://doi.org/10.1007/s10947-008-0154-9

    Article  CAS  Google Scholar 

  48. Kuzmicheva GA, Jayanna PK, Eroshkin AM, Grishina MA, Pereyaslavskaya ES, Potemkin VA, Petrenko VA (2009) Mutations in Fd phage major coat protein modulate affinity of the displayed peptide. Protein Eng. Des Sel 22:631–639. https://doi.org/10.1093/protein/gzp043

    Article  CAS  Google Scholar 

  49. Potemkin VA, Ivshina NN, Maksakov VA (2009) Theoretical Study of the conformational features of triosmium clusters. J Struct Chem 50:143–151. https://doi.org/10.1007/s10947-009-0202-0

    Article  CAS  Google Scholar 

  50. Ivshina NN, Bartashevich EV, Potemkin VA, Grishina MA, Ishmetova RI, Rusinov GL, Latosh NI, Slepukhin PA, Charushin VN (2010) Changes in the vibrational characteristics of substituted 1,2,4,5-tetrazines after complexation with 1,2,3-benzotriazole: A theoretical study. J Struct Chem 50:1053–1058. https://doi.org/10.1007/s10947-009-0155-3

    Article  CAS  Google Scholar 

  51. Manakov AY, Likhacheva AY, Potemkin VA, Ogienko AG, Kurnosov AV, Ancharov AI (2011) Compressibility of gas hydrates. ChemPhysChem 12:2476–2484. https://doi.org/10.1002/cphc.201100126

    Article  CAS  PubMed  Google Scholar 

  52. Neuburger MC (1931) Präzisionsmessung der Gitterkonstante von Cuprooxyd Cu2O. Z Phys 67:845–850. https://doi.org/10.1007/BF01390765

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by Ministry of Science and Higher Education of Russia (Grant no. FENU-2020-0019). Authors (KC, KG) acknowledged Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, India.

Funding

The project was supported by Ministry of Science and Higher Education of Russia (Grant no. FENU-2020–0019).

Author information

Authors and Affiliations

Authors

Contributions

Experimental and characterization of green synthesized Cu2O nanoparticles using Datura Metel L done by KC and supervised by KG, KK, MGR and RT. Theoretical studies performed by KG, VM, VP and MG and supervised by VP and VM. Manuscript written by KC and checked by all authors.

Corresponding author

Correspondence to K. Gurushankar.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnaiah, K., Maik, V., Kannan, K. et al. Experimental and Theoretical Studies of Green Synthesized Cu2O Nanoparticles Using Datura Metel L. J Fluoresc 32, 559–568 (2022). https://doi.org/10.1007/s10895-021-02880-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02880-4

Keywords

Navigation