Skip to main content
Log in

Boosted solar-driven photocatalysis: silver molybdate/reduced graphene oxide nanocomposites for methylene blue decomposition

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, reduced graphene oxide coupled silver molybdate binary nanocomposites (Ag2MoO4/rGO nanocomposites) have been prepared via ethanolic dispersion method. The crystalline character and surface properties of the developed Ag2MoO4/rGO nanocomposites were proved by X-ray diffractional (XRD), scanning electronic microscopic (SEM), and transition emission microscopic (TEM) techniques. Photocatalytic activity was tested by analyzing the degradation of methylene blue dye solution which shows excellent degradation ability. Ultraviolet diffused reflectance spectral analysis (UV-DRS) and photoluminescence analysis (PL) clearly shows the synergetic photocatalytic effect of Ag2MoO4/rGO nanocomposites. The photocatalytic activity of Ag2MoO4/rGO binary nanocomposites was compared with bare rGO and Ag2MoO4 in the same experimental conditions. Moreover, the effect of mass ratios of rGO in the Ag2MoO4/rGO binary nanocomposites on the photocatalytic activity was explored comparatively due to its advanced charge carrier separation and ease of adoption with photocatalysts. The optical properties and experimental results proposed a plausible photocatalytic mechanism for the Ag2MoO4/rGO binary nanocomposites. The synthetic route is independent of expensive treatments like surfactant-based artificial techniques and post-annealing therapy. Hence, Ag2MoO4/rGO binary nanocomposites may be applicable for dye effluent treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All obtained data during this work are included in this manuscript.

References

  1. Saikam L, Arthi P, Jayram ND, Sykam N (2022) Rapid removal of organic dyes from aqueous solutions using mesoporous exfoliated graphite. Diam Relat Mater 130. https://doi.org/10.1016/j.diamond.2022.109480

  2. Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manage 93:154–168. https://doi.org/10.1016/j.jenvman.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  3. Dutta S, Bhattacharjee J (2022) A comparative study between physicochemical and biological methods for effective removal of textile dye from wastewater. Dev Wastewater Treat Res Process 1–21. https://doi.org/10.1016/b978-0-323-85657-7.00003-1

  4. Selvaraj V, Swarna Karthika T, Mansiya C, Alagar M (2021) An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J Mol Struct 1224. https://doi.org/10.1016/j.molstruc.2020.129195

  5. deRichter R, Caillol S (2011) Fighting global warming: the potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change. J Photochem Photobiol C Photochem Rev 12:1–19. https://doi.org/10.1016/j.jphotochemrev.2011.05.002

    Article  CAS  Google Scholar 

  6. Selvam PP, Rathinam V, Arunraj A et al (2023) Synthesis effect of Mg-doped ZnO nanoparticles for visible light photocatalysis. Ionics (Kiel) 29:3723–3729. https://doi.org/10.1007/s11581-023-05079-8

    Article  CAS  Google Scholar 

  7. Rotami M, Hamadanian M, Rahimi-Nasrabadi M, Ganjali MR (2019) Sol–gel preparation of metal and nonmetal-codoped TiO2–graphene nanophotocatalyst for photodegradation of MO under UV and visible-light irradiation. Ionics (Kiel) 25:1869–1878. https://doi.org/10.1007/s11581-019-02861-5

    Article  CAS  Google Scholar 

  8. Arun V, Manikandan V, AlSalhi MS et al (2022) An efficient optical properties of Sn doped ZnO/CdS based solar light driven nanocomposites for enhanced photocatalytic degradation applications. Chemosphere 300. https://doi.org/10.1016/j.chemosphere.2022.134460

  9. S B, J. D (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:191–204

  10. Sivaranjani PR, Janani B, Thomas AM et al (2022) Recent development in MoS2-based nano-photocatalyst for the degradation of pharmaceutically active compounds. J Clean Prod 352. https://doi.org/10.1016/j.jclepro.2022.131506

  11. Priyadharsan A, Shanavas S, Vasanthakumar V et al (2018) Synthesis and investigation on synergetic effect of rGO-ZnO decorated MoS2 microflowers with enhanced photocatalytic and antibacterial activity. Colloids Surfaces A Physicochem Eng Asp 559:43–53. https://doi.org/10.1016/j.colsurfa.2018.09.034

    Article  CAS  Google Scholar 

  12. Manikandan S, Sasikumar D, Dhinesh S et al (2023) Enhancing photocatalytic activity through 2D heterostructured P/MnO2/r-GO nanocomposites: a study on synthesis, structure, and optical properties. Ionics (Kiel) 29:4295–4310. https://doi.org/10.1007/s11581-023-05127-3

    Article  CAS  Google Scholar 

  13. Arumugam P, Sengodan P, Duraisamy N et al (2020) An effective strategy to enhance the photocatalytic performance by forming NiS/rGO heterojunction nanocomposites. Ionics (Kiel) 26:4201–4212. https://doi.org/10.1007/s11581-020-03564-y

    Article  CAS  Google Scholar 

  14. Jha AK, Chakraborty S (2023) Environmental application of graphene and its forms for wastewater treatment: a sustainable solution toward improved public health. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-023-04381-5

  15. Han L, Wang P, Dong S (2012) Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst. Nanoscale 4:5814–5825. https://doi.org/10.1039/c2nr31699d

    Article  CAS  PubMed  Google Scholar 

  16. Arjunan K, Ramesh Babu R (2023) Fabrication of samarium doped SnO2 thin films using facile spray pyrolysis technique for photocatalysis application. Ionics (Kiel). https://doi.org/10.1007/s11581-023-05256-9

  17. Wang K, Han S, Liang L et al (2023) Synthesis of Bi2WO6/CQDs/TiO2 composite materials with enhanced photocatalytic performance. Ionics (Kiel) 29:1245–1254. https://doi.org/10.1007/s11581-023-04881-8

    Article  CAS  Google Scholar 

  18. Marschall R (2014) Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv Funct Mater 24:2421–2440. https://doi.org/10.1002/adfm.201303214

    Article  CAS  Google Scholar 

  19. Quan Y, Wang G, Chang C, Jin Z (2022) Co-catalyst and heterojunction dual strategies to induce photogenerated charge separation for efficient hydrogen evolution of CdS. Nanoscale 15:1186–1199. https://doi.org/10.1039/d2nr05466c

    Article  CAS  Google Scholar 

  20. Bo Z, Yu K, Lu G et al (2011) Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition. Carbon N Y 49:1849–1858. https://doi.org/10.1016/j.carbon.2011.01.007

    Article  CAS  Google Scholar 

  21. Gao J, Wang A, Fu Y et al (2008) Analysis of energetic species caused by contact glow discharge electrolysis in aqueous solution. Plasma Sci Technol 10:30–38. https://doi.org/10.1088/1009-0630/10/1/07

    Article  CAS  ADS  Google Scholar 

  22. Guo X, Li D, Wan J, Yu X (2015) Preparation and electrochemical property of TiO2/Nano-graphite composite anode for electro-catalytic degradation of ceftriaxone sodium. Electrochim Acta 180:957–964. https://doi.org/10.1016/j.electacta.2015.09.055

    Article  CAS  Google Scholar 

  23. Lopes, O. F., Carvalho, K. T., Macedo, G. K., de Mendonça, V. R., Avansi, W., & Ribeiro, C. (2015). Synthesis of BiVO 4 via oxidant peroxo-method: insights into the photocatalytic performance and degradation mechanism of pollutants. New Journal of Chemistry, 39(8), 6231-6237. https://doi.org/10.1039/C5NJ00984G

  24. Kanazawa S, Kawano H, Watanabe S et al (2011) Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Sci Technol 20. https://doi.org/10.1088/0963-0252/20/3/034010

  25. Ren E, Zhang C, Li D et al (2020) Leveraging metal oxide nanoparticles for bacteria tracing and eradicating. View 1. https://doi.org/10.1002/VIW.20200052

  26. Zhang D, Chang H, Li P et al (2016) Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens Actuators B Chem 225:233–240. https://doi.org/10.1016/j.snb.2015.11.024

    Article  CAS  Google Scholar 

  27. Fraga FC, Della RDG, José HJ et al (2022) Evaluation of reactive oxygen species and photocatalytic degradation of ethylene using β-Ag2MoO4/g-C3N4 composites. J Photochem Photobiol A Chem 432:1. https://doi.org/10.1016/j.jphotochem.2022.114102

    Article  CAS  Google Scholar 

  28. He Z, Yang H, Su J et al (2021) Construction of multifunctional dual Z-scheme composites with enhanced photocatalytic activities for degradation of ciprofloxacin. Fuel 294:120399. https://doi.org/10.1016/j.fuel.2021.120399

    Article  CAS  Google Scholar 

  29. Divya G, Sivakumar S, Sakthi D et al (2021) Developing the NiO/CuTiO3/ZnO ternary semiconductor heterojunction for harnessing photocatalytic activity of reactive dye with enhanced durability. J Inorg Organomet Polym Mater 31:4480–4490. https://doi.org/10.1007/s10904-021-02068-0

    Article  CAS  Google Scholar 

  30. Vishnevetskii DV, Averkin DV, Efimov AA et al (2021) Ag/α-Ag 2 MoO 4 /h-MoO 3 nanoparticle based microspheres: synthesis and photosensitive properties. Soft Matter 17:10416–10420. https://doi.org/10.1039/D1SM01315G

    Article  CAS  PubMed  ADS  Google Scholar 

  31. He Z, Yang H, Su J et al (2021) Polyacrylamide gel synthesis and photocatalytic performance of CuCo2O4 nanoparticles. Mater Lett 288:129375. https://doi.org/10.1016/j.matlet.2021.129375

    Article  CAS  Google Scholar 

  32. He Z, Yang H, Wong NH et al (2023) Construction of Cu 7 S 4 @CuCo 2 O 4 yolk–shell microspheres composite and elucidation of its enhanced photocatalytic activity, mechanism, and pathway for carbamazepine degradation. Small 19. https://doi.org/10.1002/smll.202207370

  33. Della Rocca DG, Schneider M, Fraga FC et al (2023) A comprehensive insight into the parameters that influence the synthesis of Ag2MoO4 semiconductors via experimental design. J Mater Sci Mater Electron 34. https://doi.org/10.1007/s10854-023-10897-7

  34. Ye W, Jiang Y, Liu Q et al (2022) The preparation of visible light-driven ZnO/Ag2MoO4/Ag nanocomposites with effective photocatalytic and antibacterial activity. J Alloys Compd 891. https://doi.org/10.1016/j.jallcom.2021.161898

  35. Dhanabal R, Velmathi S, Bose AC (2016) High-efficiency new visible light-driven Ag 2 MoO 4 –Ag 3 PO 4 composite photocatalyst towards degradation of industrial dyes. Catal Sci Technol 6:8449–8463. https://doi.org/10.1039/c6cy01342b

    Article  CAS  Google Scholar 

  36. Jin J, Liang Q, Song Y et al (2017) Hydrothermal synthesis of g-C3N4/Ag2MoO4 nanocomposites for improved visible light photocatalytic performance. J Alloys Compd 726:221–229. https://doi.org/10.1016/j.jallcom.2017.07.330

    Article  CAS  Google Scholar 

  37. Xu B, Wang X, Zhu C et al (2017) Probing the inhomogeneity and intermediates in the photosensitized degradation of rhodamine B by Ag3PO4 nanoparticles from an ensemble to a single molecule approach. RSC Adv 7:40896–40904. https://doi.org/10.1039/c7ra07163a

    Article  CAS  ADS  Google Scholar 

  38. Ahmed Y, Yaakob Z, Akhtar P (2016) Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal Sci Technol 6:1222–1232. https://doi.org/10.1039/c5cy01494h

    Article  CAS  Google Scholar 

  39. Zhu Q, Liu N, Zhang N et al (2018) Efficient photocatalytic removal of RhB, MO and MB dyes by optimized Ni/NiO/TiO2 composite thin films under solar light irradiation. J Environ Chem Eng 6:2724–2732. https://doi.org/10.1016/j.jece.2018.04.017

    Article  CAS  Google Scholar 

  40. Liu W, Shen J, Yang X et al (2018) Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting. Appl Surf Sci 456:369–378. https://doi.org/10.1016/j.apsusc.2018.06.156

    Article  CAS  ADS  Google Scholar 

  41. Ajmal A, Majeed I, Malik RN et al (2014) Principles and mechanisms of photocatalytic dye degradation on TiO 2 based photocatalysts: a comparative overview. RSC Adv 4:37003–37026. https://doi.org/10.1039/c4ra06658h

    Article  CAS  ADS  Google Scholar 

  42. He Z, Yang H, Sunarso J et al (2022) Novel scheme towards interfacial charge transfer between ZnIn2S4 and BiOBr for efficient photocatalytic removal of organics and chromium (VI) from water. Chemosphere 303:134973. https://doi.org/10.1016/j.chemosphere.2022.134973

    Article  CAS  PubMed  Google Scholar 

  43. Li G, Wong KH, Zhang X et al (2009) Degradation of Acid Orange 7 using magnetic AgBr under visible light: the roles of oxidizing species. Chemosphere 76:1185–1191. https://doi.org/10.1016/j.chemosphere.2009.06.027

    Article  CAS  PubMed  ADS  Google Scholar 

  44. He Z, Lin K, Hing Wong N et al (2023) Elucidation of mechanisms, pathways, and toxicity of fabricated Z-scheme KNbO3/ZnIn2S4 hollow core–shell composites for enhanced ciprofloxacin photodegradation. Chem Eng J 475:146262. https://doi.org/10.1016/j.cej.2023.146262

    Article  CAS  Google Scholar 

  45. He Z, Fareed H, Yang H et al (2023) Mechanistic insight into the charge carrier separation and molecular oxygen activation of manganese doping BiOBr hollow microspheres. J Colloid Interface Sci 629:355–367. https://doi.org/10.1016/j.jcis.2022.08.164

    Article  CAS  PubMed  Google Scholar 

  46. He Z, Siddique MS, Yang H et al (2022) Novel Z-scheme In2S3/Bi2WO6 core-shell heterojunctions with synergistic enhanced photocatalytic degradation of tetracycline hydrochloride. J Clean Prod 339:130634. https://doi.org/10.1016/j.jclepro.2022.130634

    Article  CAS  Google Scholar 

  47. Zhu Q, Wang WS, Lin L et al (2013) Facile synthesis of the novel Ag3VO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability. J Phys Chem C 117:5894–5900. https://doi.org/10.1021/jp400842r

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their thanks to Researchers Supporting Project (Ref: RSPD2024R670), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

A. Malathi: investigation; methodology; writing—original draft; software.

A. Priyadharsan: investigation; writing—original draft; formal analysis. Murni Handayani: formal analysis, software, validation. Imran Hasan: formal analysis, writing—review and editing. K. Sivaranjani: conceptualization, formal analysis, writing. G. Divya: formal analysis, software, validation. S. Sivakumar: conceptualization, formal analysis, writing—review and editing.

Corresponding author

Correspondence to S. Sivakumar.

Ethics declarations

Ethical approval

The manuscript is prepared in compliance with the Publishing Ethics Policy.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malathi, A., Priyadharsan, A., Handayani, M. et al. Boosted solar-driven photocatalysis: silver molybdate/reduced graphene oxide nanocomposites for methylene blue decomposition. Ionics 30, 1603–1614 (2024). https://doi.org/10.1007/s11581-023-05346-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05346-8

Keywords

Navigation