Skip to main content
Log in

“Polymer in ceramic” type LLZTO/PEO/PVDF composite electrolyte with high lithium migration number for solid-state lithium batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

One of the effective methods to improve the energy density and safety of lithium metal batteries is to use composite solid electrolytes with high voltage and good performance. However, the low ionic conductivity at room temperature and the unsatisfactory Li+ migration number of composite solid electrolytes lead to the growth of lithium dendrites and the increase of internal resistance, which restricts the industrialization of composite electrolytes for solid-state lithium batteries. This work prepares a Li6.4La3Zr1.4Ta0.6O12 (LLZTO)/polyethylene oxide (PEO)/polyvinylidene fluoride (PVDF) composite electrolyte. In this “polymer in ceramic” type electrolyte, the combination of PEO with PVDF and LLZTO reduces the crystallinity of PEO and promotes the rapid migration of Li+ along the PEO polymer molecular chain through complexation and decomplexation. At the same time, LLZTO, which has an excellent ion conduction function, introduces new ion conduction channels when combined with PEO and PVDF, thereby further improving ion conductivity. The LP82 composite electrolyte has a Li+ migration number of 0.78 and an electrochemical stability window of 5.5 V and exhibits excellent flexibility. The Li/LP82 electrolyte/Li battery has a relatively stable voltage of 0.04 V at 0.1 mA cm−2 and a stable cycling of 1000 h. The discharge specific capacity of the LiFePO4/LP82/Li battery is 144.4 mA h g−1 at 0.1 C after 180 cycles, and the capacity retention is 90.7%. This work provides a good reference for the preparation of composite electrolytes with simple processes, high voltage, and high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Yang C, Kun F, Ying Z, Hitz E, Hu L (2017) Protected lithium-metal anodes in batteries: from liquid to solid. Adv Mater 29(36):1701169

    Google Scholar 

  2. Nitta N, Feixiang W, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264

    CAS  Google Scholar 

  3. Cano ZP, Banham D, Ye S, Hintennach A, Jun L, Fowler M, Chen Z (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 3(4):279–289

    ADS  Google Scholar 

  4. Chen J, Wu J, Wang X, Zhou A, Yang Z (2021) Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries. Ener Stor Mater 35:70–87

    Google Scholar 

  5. Xia S, Xinsheng W, Zhang Z, Yi C, Liu W (2019) Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5(4):753–785

    CAS  Google Scholar 

  6. He X, Xiao L, Qing H, Peng Z, Xiaosheng S, Yong Z (2020) A liquid/liquid electrolyte interface that inhibits corrosion and dendrite growth of lithium in lithium-metal batteries. Angew Chem 59(16):6397–6405

    CAS  Google Scholar 

  7. Li T, Zhang X-Q, Shi P, Zhang Q (2019) Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3(11):2647–2661

    CAS  Google Scholar 

  8. Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195(15):4554–4569

    CAS  Google Scholar 

  9. Zhang B, Tan R, Yang L, Zheng J, Zhang K, Mo S, Lin Z, Pan F (2018) Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Stor Mater 10:139–159

    Google Scholar 

  10. Mi Z, Zhang AM, Chen Y, Xie J, Xin ZF, Chen YJ, Kan YH, Li SL, Lan YQ, Zhang Q (2020) Polyoxovanadate-polymer hybrid electrolyte in solid state batteries. Energy Stor Mater 29:172–181

    Google Scholar 

  11. Chang-Chun S, Abdulmalik Y, Li S-W, Qi X-L, Ma Y, De-Yi W (2021) Metal organic frameworks enabled rational design of multifunctional PEO-based solid polymer electrolytes. Chem Eng J 414:128702

    Google Scholar 

  12. Juan L, Liu Y, Yao P, Ding Z, Tang Q, Junwei W, Ye Z, Huang K, Liu X (2019) Hybridizing poly(vinylidene fluorideco-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries. Chem Eng J 367:230–238

    Google Scholar 

  13. Chen R, Qu W, Guo X, Li Li WF (2016) The pursuit of solidstate electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3(6):487–516

    CAS  Google Scholar 

  14. Shicheng Y, Schmohl S, Liu Z, Hoffmeyer M, Schön N, Hausen F, Tempel H, Kungl H, Wiemhöfer H-D, Eichel R-A (2019) Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries. J Mater Chem A 7(8):3882–3894

    Google Scholar 

  15. Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, John B (2018) Goodenough. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46:176–184

    CAS  Google Scholar 

  16. Li L, Deng Y, Duan H, Qian Y, Chen G (2022) LiF and LiNO3 as synergistic additives for PEO-PVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dual-interfaces stability. J Energy Chem 65(02):319–328

    CAS  Google Scholar 

  17. Mi J, Ma J, Likun C, Chen L, Ke Y, Jie B, Heyi X, Xin S, Lv W, Guiming Z, Bing HY (2022) Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Stor Mater 48:375–383

    Google Scholar 

  18. Yang X, Qiyue W, Yaning L, Jun Z, Xinhui X, Hui H, Yongping G, He X, Zhen X, Wenkui Z (2023) Three-dimensional polyimide nanofiber framework reinforced polymer electrolyte for all-solid-state lithium metal battery. J Colloid Interface Sci 638:908–917

    Google Scholar 

  19. Wan Z, Lei D, Yang W, Liu C, Shi K, Xiaoge Hao L, Shen WL, Li B, Yang Q-H, Kang F, He Y-B (2019) Low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv Func Mater 29(1):1805301

    Google Scholar 

  20. Ye Q, Haoyue L, Shuhao W, Can C, Cheng Z, Tianyou Z, Li H (2022) Fabricating a PVDF skin for PEO-based SPE to stabilize the interface both at cathode and anode for Li-ion batteries. J Energy Chem 70:356–362

    CAS  Google Scholar 

  21. Rao CP, Wunder SL (2017) engineered interfaces in hybrid ceramic–polymer electrolytes for use in all-solid-state Li batteries. ACS Energy Lett 2(1):134–138

    Google Scholar 

  22. Liu Q, Liu Y, Jiao X, Song Z, Sadd M, Xiaoxiong X, Matic A, Xiong S, Song J (2019) Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries. Energy Stor Mater 23:105–111

    Google Scholar 

  23. Zhang J, Zang X, Wen H, Dong T, Chai J, Li Y, Chen B, Zhao J, Dong S, Ma J, Yue L, Liu Z, Guo X, Cui G, Chen L (2017) High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J Mater Chem A 5(10):4940–4948

    CAS  Google Scholar 

  24. James E, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13):2324–2328

    Google Scholar 

  25. Bai C, Zhenguo W, Xiang W, Wang G, Liu Y, Zhong Y, Chen B, Liu R, He F, Guo X (2020) Poly(ethylene oxide)/Poly(vinylidene fluoride)/Li6.4La3Zr1.4Ta0.6O12 composite electrolyte with a stable interface for high performance solid state lithium metal batteries. J Power Sources 472:228461

    CAS  Google Scholar 

  26. Tang Z, Wang J, Chen Q, He W, Shen C, Mao X-X, Zhang J (2007) A novel PEO-based composite polymer electrolyte with absorptive glass mat for Li-ion batteries. Electrochim Acta 52(24):6638–6643

    CAS  Google Scholar 

  27. Ghelichi M, Qazvini NT, Jafari SH, Khonakdar HA, Farajollahi Y, Scheffler C (2013) Conformational, thermal, and ionic conductivity behavior of PEO in PEO/PMMA miscible blend: investigating the effect of lithium salt. J Appl Polym Sci 129(4):1868–1874

    CAS  Google Scholar 

  28. Sundar M, Selladurai S (2006) Effect of fillers on magnesium-poly(ethylene oxide) solid polymer electrolyte. Ionics 12(4–5):281–286

    CAS  Google Scholar 

  29. Qian Z, Ma J, Shanmu D, Li X, Guanglei C (2019) Intermolecular chemistry in solid polymer electrolytes for highenergy-density lithium batteries. Adv Mater 31(50):1902029

    Google Scholar 

  30. Polu AR, Kim DK, Rhee H-W (2015) Poly(ethylene oxide)-lithium difluoro(oxalato)borate new solid polymer electrolytes: ion–polymer interaction, structural, thermal, and ionic conductivity studies. Ionics 21(10):2771–2780

    CAS  Google Scholar 

  31. Guo Bin F, Yanda WJ, Yi G, Yunlong Z, Kai Y, Sida Z, Lishuo L, Shichun Y, Xinhua L, Feng P (2022) Strategies and characterization methods for achieving high performance PEO-based solid-state lithium-ion batteries. Chem Commun 59:8182–8193

    Google Scholar 

  32. Gao L, Li J, Jingge J, Wang L, Yan J, Cheng B, Kang W, Deng N, Li Y (2020) Designing of root-soil-like polyethylene oxidebased composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries. Chem Eng J 389:124478

    CAS  Google Scholar 

  33. Prasanth R, Shubha N, Hng HH, Srinivasan M (2014) Effect of poly(ethylene oxide) on ionic conductivity and electrochemical properties of poly(vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. J Power Sources 245:283–291

    CAS  Google Scholar 

  34. Song S, Chen B, Ruan Y, Sun J, Yu L, Wang Y, Thokchom J (2018) Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-Ion batteries. Electrochimca Acta 270:501–508

    CAS  Google Scholar 

  35. Zhu, Pei, Yan, Chaoyi, Dirican, Mahmut, Zhu, Jiadeng,Zang, Jun, Selvan, R. Kalai, Chung, Ching-Chang, Jia, Hao, Li, Ya, Kiyak, asar, Wu, Nianqiang, Zhang, Xiangwu (2018) Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J Mater Chem A 6(10):4279–4285

  36. Zhang J, Zhao J, Yue L, Wang Q, Chai J, Liu Z, Zhou X, Li H, Guo Y, Cui G, Chen L (2015) Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv Energy Mater 5(24):1501082

    Google Scholar 

  37. Chowdhury FI, Khandaker MU, Amin YM, Kufian MZ, Woo HJ (2017) Vibrational, electrical, and structural properties of PVDF– LiBOB solid polymer electrolyte with high electrochemical potential window. Ionics 23(2):275–284

    CAS  Google Scholar 

  38. Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55(22):6332–6341

    CAS  Google Scholar 

  39. Hao C, David A, Luke H, Ma J, Chen S, Cheng Y, Huijun Z, Guanglei C, Shanqing Z (2020) Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv Energy Mater 10(21):2000049

    Google Scholar 

  40. Zhang MY, Li MX, Chang Z, Wang YF, Gao J, Zhu YS, Wu YP, Huang W (2017) A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery. Electrochim Acta 245:752–759

    CAS  Google Scholar 

  41. Manthiram A, Xingwen Y, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2(45):294–303

    Google Scholar 

  42. Cun S, Li Z, Peng Jun W, Xiaohong PH, Shiyuan Z, Qiao Y, Hui S, Ling H, Shi-Gang S (2022) Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries. J Mater Chem A 10(30):16087–16094

    Google Scholar 

  43. Linghong X, Li G, Guan J, Wang L, Chen J, Zheng J (2019) Garnet-doped composite polymer electrolyte with high ionic conductivity for dendrite-free lithium batteries. J Energy Storage 24:100767

    Google Scholar 

  44. Jeffrey L, Allen P, Yi C, Zhenan B (2018) Effects of polymer coatings on electrodeposited lithium metal. Abstr Pap Am Chem Soc 140:11735–11744

    Google Scholar 

  45. Huang T, Long M-C, Wang X-L, Gang W, Wang Y-Z (2019) One-step preparation of poly(ionic liquid)-based flexible electrolytes by in-situ polymerization for dendrite-free lithium ion batteries. Chem Eng J 375:122062

    CAS  Google Scholar 

  46. Lei Z, Weiwei Z, Hongyu G, Li Y, Meng G, Xiaoyu Z, Li D, Yanli Z, Caifu D, Wenbao L, Fuyi J, Jianchao S (2022) Quasi-solid polymer electrolytes with fast interfacial transport for lithium metal batteries. Surf Interfaces 34:102299

    Google Scholar 

  47. Qingwen L, Yang J, Wei L, Wang J, Nuli Y (2015) Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries. Electrochim Acta 152:489–495

    Google Scholar 

  48. Jianqi S, Xiangming Y, He C, Li Y, Qinghong Z, Chengyi H, Qiu Y, Hongzhi W (2022) Highly stable lithium batteries enabled by composite solid electrolyte with synergistically enhanced in-built ion-conductive framework. J Power Sources 545:231928

    Google Scholar 

  49. Ting Z, Weijie K, Zhang Yafang W, Wenjia LW, Jingtao W (2023) Laminar composite solid electrolyte with succinonitrilepenetrating metal-organic framework (MOF) for stable anode interface in solid-state lithium metal battery. J Power Sources 554:232349

    Google Scholar 

  50. Bing Z, Ma W, Li Bobo H, Shangying XL, Xiaoyu L, Yong J, Jiujun Z (2022) A fast and low-cost interface modification method to achieve high-performance garnet-based solid-state lithium metal batteries. Nano Energy 91:106643

    Google Scholar 

  51. Zheng X, Wei J, Lin W, Ji K, Wang C, Chen M (2022) Bridging Li7La3Zr2O12 nanofibers with poly(ethylene oxide) by coordination bonds to enhance the cycling stability of all-solid-state lithium metal batteries. ACS Appl Mater Interfaces 14(4):5346–5354

    CAS  PubMed  Google Scholar 

  52. Lin Z, Hongbo X, Wenjing Z, Kan Z (2022) Multi-component solid PVDF-HFP/PPC/LLTO-nanorods composite electrolyte enabling advanced solid-state lithium metal batteries. Electrochim Acta 435:141384

    Google Scholar 

  53. Long NH, Van Tung L, Cuong NM, Hoon KS, Hung NQ, Israel NN, YunSeok J, Wook A (2022) Nb/Al co-doped Li7La3Zr2O12 composite solid electrolyte for high-performance all-solid-state batteries. Adv Func Mater 32(45):2207874

    Google Scholar 

  54. Xue-Liang Z, Fang-Ying S, Xin L, Siyan Z, Zhiqin R, Yue-Peng C, Xu-Jia H, Qifeng Z (2022) Fast Li+ transport and superior interfacial chemistry within composite polymer electrolyte enables ultra-long cycling solid-state Li-metal batteries. Energy Stor Mater 52:201–209

    Google Scholar 

  55. Zou Y, Ao Z, Zhang Z, Chen N, Zou H, Lv Y, Huang Y (2023) Metal-organic framework modified PEO-based solid electrolyte for high-performance all-solid-state lithium metal batteries. Chem Eng Sci 275:118705

    CAS  Google Scholar 

  56. Khang TH, Thi TB, Bo-Rong Z, Rajan J, Jeng-Kuei C, ChunChen Y (2023) Sandwich-structured composite polymer electrolyte based on PVDF-HFP/PPC/Al-doped LLZO for high-voltage solid-state lithium batteries. ACS Appl Energy Mater 6:1475–1487

    Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (52002227) and the Postdoctoral Research Foundation of China (2022M721971). And thanks to the support of Beijing National Innovation Institute of Lightweight Ltd.

Author information

Authors and Affiliations

Authors

Contributions

YW: conceptualization, methodology, formal analysis, investigation, writing—original draft, validation. TZ: investigation, writing—review and editing, resources. YL: investigation. JF: investigation. SD: funding acquisition. SY: investigation, resources, supervision, project administration.

Corresponding authors

Correspondence to Tianyu Zhu or Shuyu Yao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 150 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhu, T., Lv, Y. et al. “Polymer in ceramic” type LLZTO/PEO/PVDF composite electrolyte with high lithium migration number for solid-state lithium batteries. Ionics 30, 787–798 (2024). https://doi.org/10.1007/s11581-023-05328-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05328-w

Keywords

Navigation