Skip to main content
Log in

Recent research progress on ruthenium-based catalysts at full pH conditions for the hydrogen evolution reaction

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Hydrogen is considered a key renewable energy source to meet future energy needs, and the accelerated development of hydrogen energy is largely dependent on the cost-effective and efficient production of hydrogen. Nowadays, the production of hydrogen by electrolyzing water is a generation of clean energy with great potential for development, but its industrialization requires the search for cheap and efficient catalysts. Platinum (Pt) is currently regarded as the most effective catalyst for the production of hydrogen from electrolytic water. However, its high price and scarcity limit its scale up, so the search for cheap and efficient catalysts has become a hot research topic. Nowadays, various noble/non-precious and metal-free catalysts have been developed for hydrogen evolution processes, among which ruthenium (Ru) catalysts are recognized as a promising material for hydrogen production from electrolytic water because they make a better balance between performance and price. In this review, we summarized the reported ruthenium-based catalysts with excellent hydrogen evolution reaction (HER) activity, specifically, Ru with carbon supports, Ru phosphide–based catalysts, and Ru catalysts on other metals. Finally, we discussed challenges and prospects for the development of Ru-based catalysts in the field of HER research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No new data were created.

References

  1. Gong L, Yang H, Wang H et al (2021) Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res 14(12):4528–4533. https://doi.org/10.1007/s12274-021-3366-3

    Article  CAS  Google Scholar 

  2. Jing H, Zhu P, Zheng X et al (2022) Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv Powder Mater 1(1):100013. https://doi.org/10.1016/j.apmate.2021.10.004

    Article  Google Scholar 

  3. Wei YW, Yang G, Xu XX et al (2023) Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation. Rare Met 2023:1–11. https://doi.org/10.1007/s12598-022-02246-0

    Article  CAS  Google Scholar 

  4. Seh ZW, Kibsgaard J, Dickens CF et al (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321):eaad4998. https://doi.org/10.1126/science.aad4998

    Article  PubMed  Google Scholar 

  5. Chen X, Wan J, Zheng M et al (2023) Engineering single atomic ruthenium on defective nickel vanadium layered double hydroxide for highly efficient hydrogen evolution. Nano Res 16(4):4612–4619. https://doi.org/10.1007/s12274-022-5075-y

    Article  CAS  Google Scholar 

  6. Cui C, Hu X, Wen L (2020) Recent progress on nanostructured bimetallic electrocatalysts for water splitting and electroreduction of carbon dioxide. J Semicond 41(9):091705. https://doi.org/10.1088/1674-4926/41/9/091705

    Article  CAS  Google Scholar 

  7. Ye S, Luo F, Zhang Q et al (2019) Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ Sci 12(3):1000–1007. https://doi.org/10.1039/c8ee02888e

    Article  CAS  Google Scholar 

  8. Zhang X, Lai Z, Ma Q et al (2018) Novel structured transition metal dichalcogenide nanosheets. Chem Soc Rev 47(9):3301–3338. https://doi.org/10.1039/c8cs00094h

    Article  CAS  PubMed  Google Scholar 

  9. Yang H, Ma D, Li Y et al (2023) Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chin J Struct Chem 2023:100031. https://doi.org/10.1016/j.cjsc.2023.100031

    Article  Google Scholar 

  10. Zhu F, Xue J, Zeng L et al (2022) One-pot pyrolysis synthesis of highly active Ru/RuOX nanoclusters for water splitting. Nano Res 15(2):1020-1026. https://doi.org/10.1007/s12274-021-3590-x

  11. Wang J, Yue X, Yang Y et al (2020) Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. J Alloy Compd 819:153346. https://doi.org/10.1016/j.jallcom.2019.153346

    Article  CAS  Google Scholar 

  12. Luo W, Wang Y, Cheng C (2020) Ru-based electrocatalysts for hydrogen evolution reaction: recent research advances and perspectives. Mater Today Phys 15:100274. https://doi.org/10.1016/j.mtphys.2020.100274

    Article  Google Scholar 

  13. Durst J, Siebel A, Simon C et al (2014) New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci 7(7):2255–2260. https://doi.org/10.1039/c4ee00440j

    Article  CAS  Google Scholar 

  14. Sultan S, Tiwari JN, Singh AN et al (2019) Single atoms and clusters-based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv Energy Mater 9(22):1900624. https://doi.org/10.1002/aenm.201900624

    Article  CAS  Google Scholar 

  15. Zhang W, Lai W, Cao R et al (2017) Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin and corrole-based systems. Chem Rev 117:3717–3797. https://doi.org/10.1021/acs.chemrev.6b00299

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Xu X, Zhou W et al (2017) Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv Sci 4:1600371. https://doi.org/10.1002/advs.201600371

    Article  CAS  Google Scholar 

  17. Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3(29):14942–14962. https://doi.org/10.1039/c5ta02974k

    Article  CAS  Google Scholar 

  18. Morales-Guio CG, Stern LA, Hu X (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43(18):6555–6569. https://doi.org/10.1039/c3cs60468c

    Article  CAS  PubMed  Google Scholar 

  19. Zhang G, Wang G, Liu Y et al (2016) Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J Am Chem Soc 138(44):14686–14693. https://doi.org/10.1021/jacs.6b08491

    Article  CAS  PubMed  Google Scholar 

  20. Burmistrz P, Chmielniak T, Czepirski L et al (2016) Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification. J Clean Prod 139:858–865. https://doi.org/10.1016/j.jclepro.2016.08.112

    Article  CAS  Google Scholar 

  21. Seyitoglu SS, Dincer I, Kilicarslan A (2017) Energy and exergy analyses of hydrogen production by coal gasification. Int J Hydrogen Energy 42(4):2592–2600. https://doi.org/10.1016/j.ijhydene.2016.08.228

    Article  CAS  Google Scholar 

  22. Huang X, Lu R, Cen Y et al (2023) Micropore-confined Ru nanoclusters catalyst for efficient pH-universal hydrogen evolution reaction. Nano Res 2023:1–8. https://doi.org/10.1007/s12274-023-5711-1

    Article  CAS  Google Scholar 

  23. Xu S, Niu M, Zhao G et al (2023) Size control and electronic manipulation of Ru catalyst over B, N co-doped carbon network for high-performance hydrogen evolution reaction. Nano Res 16:6212–6219. https://doi.org/10.1007/s12274-022-5250-1

    Article  CAS  Google Scholar 

  24. Ma R, Wang X, Yang X et al (2023) Identification of active sites and synergistic effect in multicomponent carbon-based Ru catalysts during electrocatalytic hydrogen evolution. Nano Res 16:166–173. https://doi.org/10.1007/s12274-022-4643-5

    Article  CAS  Google Scholar 

  25. Cao K, Biskupek J, Stoppiello CT et al (2020) Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube. Nat Chem 12(10):921–928. https://doi.org/10.1038/s41557-020-0538-9

    Article  CAS  PubMed  Google Scholar 

  26. Yi C, Yang Y, Nie Z (2019) Alternating copolymerization of inorganic nanoparticles. J Am Chem Soc 141(19):7917–7925. https://doi.org/10.1021/jacs.9b02316

    Article  CAS  PubMed  Google Scholar 

  27. Ding Y, Cao K, He J et al (2022) Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction. Chin J Catal 43(6):1535–1543. https://doi.org/10.1016/s1872-2067(21)63977-3

    Article  CAS  Google Scholar 

  28. Ye S, Luo F, Xu T et al (2020) Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N-doped graphene by accelerating water dissociation. Nano Energy 68:104301. https://doi.org/10.1016/j.nanoen.2019.104301

    Article  CAS  Google Scholar 

  29. Wang T, Yuan H, Zhou J et al (2020) Graphite carbon nitride)assisted ruthenium/reduced graphene oxide as higheefficiency electrocatalyst for hydrogen evolution reaction under alkaline conditions. Chem Electro Chem 7(15):3269–3273. https://doi.org/10.1002/celc.202000681

    Article  CAS  Google Scholar 

  30. Li F, Han GF, Noh HJ et al (2018) Mechanochemically assisted synthesis of a Ru catalyst for hydrogen evolution with performance superior to Pt in both acidic and alkaline media. Adv Mater 30(44):1803676. https://doi.org/10.1002/adma.201803676

    Article  CAS  Google Scholar 

  31. Fan L, Liu PF, Yan X et al (2016) Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat Commun 7(1):10667. https://doi.org/10.1038/ncomms10667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu QL, Xia W, Akita T et al (2016) Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv Mater 28(30):6391–6398. https://doi.org/10.1002/adma.201600979

    Article  CAS  PubMed  Google Scholar 

  33. Micheroni D, Lan G, Lin W (2018) Efficient electrocatalytic proton reduction with carbon nanotube-supported metal-organic frameworks. J Am Chem Soc 140(46):15591–15595. https://doi.org/10.1021/jacs.8b09521

    Article  CAS  PubMed  Google Scholar 

  34. Yan B, Liu D, Feng X et al (2020) Ru species supported on MOF-derived N-doped TiO2/C hybrids as efficient electrocatalytic/photocatalytic hydrogen evolution reaction catalysts. Adv Func Mater 30(31):2003007. https://doi.org/10.1002/adfm.202003007

    Article  CAS  Google Scholar 

  35. Sun Y, Xue Z, Liu Q et al (2021) Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat Commun 12(1):1369. https://doi.org/10.1038/s41467-021-21595-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu J, Li R, Yang B (2020) Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent Sci 6(12):2179–2195. https://doi.org/10.1021/acscentsci.0c01306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu C, Li M, Qiu J et al (2019) Design and fabrication of carbon dots for energy conversion and storage. Chem Soc Rev 48(8):2315–2337. https://doi.org/10.1039/c8cs00750k

    Article  CAS  PubMed  Google Scholar 

  38. Liu ML, Chen BB, Li CM et al (2019) Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 21(3):449–471. https://doi.org/10.1039/c8gc02736f

    Article  CAS  Google Scholar 

  39. Jiang K, Wang Y, Gao X et al (2018) Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew Chem Int Ed 57(21):6216–6220. https://doi.org/10.1002/anie.201802441

    Article  CAS  Google Scholar 

  40. Liu Y, Yang Y, Peng Z et al (2019) Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values. Nano Energy 65:104023. https://doi.org/10.1016/j.nanoen.2019.104023

    Article  CAS  Google Scholar 

  41. Li W, Wei Z, Wang B et al (2020) Carbon quantum dots enhanced the activity for the hydrogen evolution reaction in ruthenium-based electrocatalysts. Mater Chem Front 4(1):277–284. https://doi.org/10.1039/c9qm00618d

    Article  CAS  Google Scholar 

  42. Song H, Cheng Y, Li B et al (2020) Carbon dots and RuP2 nanohybrid as an efficient bifunctional catalyst for electrochemical hydrogen evolution reaction and hydrolysis of ammonia borane. ACS Sustain Chem Eng 8(9):3995–4002. https://doi.org/10.1021/acssuschemeng.0c00745

    Article  CAS  Google Scholar 

  43. Yuan L, Wei D, Li H et al (2021) Carbon dots enhance ruthenium nanoparticles for efficient hydrogen production in alkaline. Acta Phys Chim Sin 37(7):2009082. https://doi.org/10.3866/pku.whxb.202009082

    Article  Google Scholar 

  44. Zhou F, Zhou Y, Wang J et al (2019) Enlightening from γ, γ′ and β phase transformations in Al-Co-Ni alloy system: a review. Curr Opin Solid State Mater Sci 23(6):100784. https://doi.org/10.1016/j.cossms.2019.100784

  45. Wu Q, Luo M, Han J et al (2019) Identifying electrocatalytic sites of the nanoporous copper-ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett 5(1):192–199. https://doi.org/10.1021/acsenergylett.9b02374

    Article  CAS  Google Scholar 

  46. Li W, Zhao Y, Liu Y et al (2021) Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew Chem 133(6):3327–3335. https://doi.org/10.1002/anie.202013985

    Article  CAS  Google Scholar 

  47. Song H, Wu M, Tang Z et al (2021) Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew Chem Int Ed 60(13):7234–7244. https://doi.org/10.1002/anie.202017102

    Article  CAS  Google Scholar 

  48. Yuan W, Zhang Y, Cheng L et al (2016) The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries. J Mater Chem A 4(23):8932–8951. https://doi.org/10.1039/c6ta01546h

    Article  CAS  Google Scholar 

  49. Gupta BD, Pathak A, Semwal V (2019) Carbon-based nanomaterials for plasmonic sensors: a review. Sensors 19(16):3536. https://doi.org/10.3390/s19163536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ignat SR, Lazăr AD, Şelaru A et al (2019) Versatile biomaterial platform enriched with graphene oxide and carbon nanotubes for multiple tissue engineering applications. Int J Mol Sci 20(16):3868. https://doi.org/10.3390/ijms20163868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cao Y, Lu Y, Ang EH et al (2019) MOF-derived uniform Ni nanoparticles encapsulated in carbon nanotubes grafted on rGO nanosheets as bifunctional materials for lithium-ion batteries and hydrogen evolution reaction. Nanoscale 11(32):15112–15119. https://doi.org/10.1039/c9nr05504e

    Article  CAS  PubMed  Google Scholar 

  52. Cui H, Yan X, Monasterio M et al (2017) Effects of various surfactants on the dispersion of MWCNTs–OH in aqueous solution. Nanomaterials 7(9):262. https://doi.org/10.3390/nano7090262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arumugam S, Ramamoorthy P, Chakkarapani LD (2020) Synthesis and characterizations of biocompatible polymers and carbon nanotubes-based hybrids for biomedical applications. Int J Polym Mater Polym Biomater 69(12):786–797. https://doi.org/10.1080/00914037.2019.1616200

    Article  CAS  Google Scholar 

  54. Wu X, Wang Z, Zhang D et al (2021) Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat Commun 12(1):4018. https://doi.org/10.1038/s41467-021-24322-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu W, Huang H, Wu X et al (2022) Mn-doped Ru/RuO2@CNT with strong metal-support interaction for efficient water splitting in acidic media. Compos B Eng 242:110013. https://doi.org/10.1016/j.compositesb.2022.110013

    Article  CAS  Google Scholar 

  56. Zhou F, Sa R, Zhang X et al (2020) Robust ruthenium diphosphide nanoparticles for pH-universal hydrogen evolution reaction with platinum-like activity. Appl Catal B 274:119092. https://doi.org/10.1016/j.apcatb.2020.119092

    Article  CAS  Google Scholar 

  57. Zhang D, Miao H, Wu X et al (2022) Scalable synthesis of ultra-small Ru2P@Ru/CNT for efficient seawater splitting. Chin J Catal 43(4):1148–1155. https://doi.org/10.1016/s1872-2067(21)64012-3

    Article  CAS  Google Scholar 

  58. Huang Z, Chen Z, Chen Z et al (2014) Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8(8):8121–8129. https://doi.org/10.1021/nn5022204

    Article  CAS  PubMed  Google Scholar 

  59. Popczun EJ, Read CG, Roske CW et al (2014) Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem Int Ed 53(21):5427–5430. https://doi.org/10.1002/ange.201402646

    Article  CAS  Google Scholar 

  60. Xiao P, Sk MA, Thia L et al (2014) Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci 7(8):2624–2629. https://doi.org/10.1039/c4ee00957f

    Article  CAS  Google Scholar 

  61. Son CY, Kwak IH, Lim YR et al (2016) FeP and FeP2 nanowires for efficient electrocatalytic hydrogen evolution reaction. Chem Commun 52(13):2819–2822. https://doi.org/10.1039/c5cc09832g

    Article  CAS  Google Scholar 

  62. Pi C, Huang C, Yang Y et al (2020) In situ formation of N-doped carbon-coated porous MoP nanowires: a highly efficient electrocatalyst for hydrogen evolution reaction in a wide pH range. Appl Catal B 263:118358. https://doi.org/10.1016/j.apcatb.2019.118358

    Article  CAS  Google Scholar 

  63. Chang Q, Ma J, Zhu Y et al (2018) Controllable synthesis of ruthenium phosphides (RuP and RuP2) for pH-universal hydrogen evolution reaction. ACS Sustain Chem Eng 6(5):6388–6394. https://doi.org/10.1021/acssuschemeng.8b00187

    Article  CAS  Google Scholar 

  64. Liu T, Wang J, Zhong C et al (2019) Benchmarking three ruthenium phosphide phases for electrocatalysis of the hydrogen evolution reaction: experimental and theoretical insights. Chem A Europ J 25(33):7826–7830. https://doi.org/10.1002/chem.201901215

    Article  CAS  Google Scholar 

  65. Jiang X, Jang H, Liu S et al (2021) The heterostructure of Ru2P/WO3/NPC synergistically promotes H2O dissociation for improved hydrogen evolution. Angew Chem 133(8):4156–4162. https://doi.org/10.1002/anie.202014411

    Article  CAS  Google Scholar 

  66. Du H, Du Z, Wang T et al (2022) Unlocking interfacial electron transfer of ruthenium phosphides by homologous core–shell design toward efficient hydrogen evolution and oxidation. Adv Mater 34(37):2204624. https://doi.org/10.1002/adma.202204624

    Article  CAS  Google Scholar 

  67. Jiang B, Wang Z, Cheng L et al (2023) Regulating charge distribution of Ru atoms in ruthenium phosphide/carbon nitride/carbon for promoting hydrogen evolution reaction. J Alloy Compd 939:168717. https://doi.org/10.1016/j.jallcom.2023.168717

    Article  CAS  Google Scholar 

  68. Wang YH, Li RQ, Li HB et al (2021) Controlled synthesis of ultrasmall RuP2 particles on N, P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution. Rare Met 40:1040–1047. https://doi.org/10.1007/s12598-020-01665-1

    Article  CAS  Google Scholar 

  69. Zhu J, Li S, Xiao M et al (2020) Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy 77:105212. https://doi.org/10.1016/j.nanoen.2020.105212

    Article  CAS  Google Scholar 

  70. Liu X, Liu F, Yu J et al Charge redistribution caused by S, P synergistically active Ru endows an ultrahigh hydrogen evolution activity of S-doped RuP embedded in N, P, S-doped carbon. Adv Sci 7(17):2001526. https://doi.org/10.1002/advs.202001526

  71. Zhai Z, Wang Y, Si C et al (2023) Self-templating synthesis and structural regulation of nanoporous rhodium-nickel alloy nanowires efficiently catalyzing hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res 16:2026–2034. https://doi.org/10.1007/s12274-022-4861-x

    Article  CAS  Google Scholar 

  72. Mahmood J, Li F, Jung SM et al (2017) An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat Nanotechnol 12(5):441–446. https://doi.org/10.1038/nnano.2016.304

    Article  CAS  PubMed  Google Scholar 

  73. Liu S, Mu X, Li W et al (2019) Cation vacancy-modulated PtPdRuTe five-fold twinned nanomaterial for catalyzing hydrogen evolution reaction. Nano Energy 61:346–351. https://doi.org/10.1016/j.nanoen.2019.04.086

    Article  CAS  Google Scholar 

  74. Pei A, Li G, Zhu L et al (2022) Nickel hydroxide-supported Ru single atoms and Pd nanoclusters for enhanced electrocatalytic hydrogen evolution and ethanol oxidation. Adv Funct Mater 32(51):2208587. https://doi.org/10.1002/adfm.202208587

    Article  CAS  Google Scholar 

  75. Zhang L, Si R, Liu H et al (2019) Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat Commun 10(1):4936. https://doi.org/10.1038/s41467-019-12887-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang JH, Yang SW, Ma FB et al (2023) RuCo alloy nanoparticles embedded within N-doped porous two-dimensional carbon nanosheets: a high-performance hydrogen evolution reaction catalyst. Tungsten 2023:1–10. https://doi.org/10.1007/s42864-023-00223-3

    Article  Google Scholar 

  77. Cai C, Liu K, Zhu Y et al (2022) Optimizing hydrogen binding on Ru sites with RuCo alloy nanosheets for efficient alkaline hydrogen evolution. Angew Chem Int Ed 61(4):e202113664. https://doi.org/10.1002/anie.202113664

    Article  CAS  Google Scholar 

  78. Yuan Y, Han W, Zhang C et al (2023) An insight into the enhanced mechanism of Ru-MoO2 interfacial chemical bonding for hydrogen evolution reaction in alkaline media. Nano Res 16(2):2230–2235. https://doi.org/10.1007/s12274-022-5013-z

    Article  CAS  Google Scholar 

  79. Li H J W, Liu K, Fu J et al (2021) Paired Ru-O-Mo ensemble for efficient and stable alkaline hydrogen evolution reaction. Nano Energy 82:105767. https://doi.org/10.1016/j.nanoen.2021.105767

  80. Liu Q, Zhang C, Wang P et al (2022) Nearly hollow Ru-Cu-MoO2 octahedrons consisting of clusters and nanocrystals for high efficiency hydrogen evolution reaction. J Mater Chem A 10(23):12341–12349. https://doi.org/10.1039/d2ta01699k

    Article  CAS  Google Scholar 

  81. Wu K, Sun K, Liu S et al (2020) Atomically dispersed Ni–Ru–P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy 80:105467. https://doi.org/10.1016/j.nanoen.2020.105467

    Article  CAS  Google Scholar 

  82. Ren J, Liu J, Du Y et al (2023) Trace ruthenium promoted dual-reconstruction of CoFeP@C/NF for activating overall water splitting performance beyond precious-metals. Nano Res 16:10810–10821. https://doi.org/10.1007/s12274-023-5825-5

    Article  CAS  Google Scholar 

  83. Liu Y, Liu X, Jadhav AR et al (2021) Unraveling the function of metal-amorphous support interactions in single-atom electrocatalytic hydrogen evolution. Angew Chem Int Ed 61(9):e202114160. https://doi.org/10.1002/anie.202114160

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Gansu key research and development program (industry field) under Grant No. 23YFGA0056, National Natural Science Foundation of China under Grant No. 22262018, and Hongliu outstanding youth talents support project.

Author information

Authors and Affiliations

Authors

Contributions

CL Li, LY Chen, D Dou and HB Wang conceived the central ideas. CL Li and LY Chen wrote the original article. QP Zhao and YY Cong supervised and revised the paper. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yuanyuan Cong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Chen, L., Dou, D. et al. Recent research progress on ruthenium-based catalysts at full pH conditions for the hydrogen evolution reaction. Ionics 29, 4987–5001 (2023). https://doi.org/10.1007/s11581-023-05248-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05248-9

Keywords

Navigation