Skip to main content
Log in

Homogeneously deposited polyaniline on etched porous carbon cloth towards advanced supercapacitor electrode

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Supercapacitor with high energy density is highly desired for wearable and flexible smart electronics. For the development of polyaniline-based supercapacitors, it is crucial to improve the long-term stability and specific capacitance. Herein, carbon cloth is etched by metal (oxy)hydroxides to obtain the etched porous carbon cloth (EPCC) for the subsequent controllable grafting of pseudocapacitive polyaniline (PANI). The high specific area, porous structure, and abundant oxygenic groups of EPCC promote the homogeneous deposition of PANI, thus allowing significantly improve specific capacitance, rate capability and electrochemical reversibility. As a result, the EPCC/PANI electrode exhibits excellent areal specific capacitance of 557.5 mF cm−2 in 1 M H2SO4 solution at a current density of 1 mA cm−2 and 242.6 F g−1 at 1 A g−1, with highest energy density of 14.493 Wh kg−1 and highest power density of 1530 W kg−1, respectively. The EPCC/PANI electrode also manifests excellent structural stability, achieving 72.73% capacitance retention after 5000 cycles. This work provides a feasible strategy for the design and construction of flexible energy storage device, which paves the way for the development of wearable electronics in the era of Internet of Things.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Du P, Dong Y, Kang H, Li J, Niu J, Liu P (2020) J Power Sources 449:227477. https://doi.org/10.1016/j.jpowsour.2019.227477

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2020) Nat Mater 19:1151–1163. https://doi.org/10.1038/s41563-020-0747-z

    Article  CAS  PubMed  Google Scholar 

  3. Bai C, Wang Y, Fan Z, Yan L, Jiao H (2022) J Power Sources 521:230971. https://doi.org/10.1016/j.jpowsour.2021.230971

    Article  CAS  Google Scholar 

  4. Lin Y, Zhang H, Deng W, Zhang D, Li N, Wu Q, He C (2018) J Power Sources 384:278–286. https://doi.org/10.1016/j.jpowsour.2018.03.003

    Article  CAS  Google Scholar 

  5. Zhang X, Ma L, Gan M, Fu G, Jin M, Lei Y, Yang P, Yan M (2017) J Power Sources 340:22–31. https://doi.org/10.1016/j.jpowsour.2016.11.058

    Article  CAS  Google Scholar 

  6. Choi C, Ashby DS, Butts DM, DeBlock RH, Wei Q, Lau J, Dunn B (2019) Nat Rev Mater 5:5–19. https://doi.org/10.1038/s41578-019-0142-z

    Article  Google Scholar 

  7. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Hao X, Chen GZ (2020) Energy Environ Mater 3:247–264. https://doi.org/10.1002/eem2.12101

    Article  CAS  Google Scholar 

  9. Pallavolu MR, Kumar YA, Ramesh Reddy N, Dhananjaya M, Al-Asbahi BA, Sreedhar A, Joo SW (2022) J Alloys Compd 918:165609. https://doi.org/10.1016/j.jallcom.2022.165609

    Article  CAS  Google Scholar 

  10. Pallavolu MR, Gaddam N, Banerjee AN, Nallapureddy RR, Joo SW (2021) Int J Energy Res 46:1234–1249. https://doi.org/10.1002/er.7242

    Article  CAS  Google Scholar 

  11. Liu P, Yan J, Guang Z, Huang Y, Li X, Huang W (2019) J Power Sources 424:108–130. https://doi.org/10.1016/j.jpowsour.2019.03.094

    Article  CAS  Google Scholar 

  12. Wang X, Zhang D, Zhang H, Gong L, Yang Y, Zhao W, Yu S, Yin Y, Sun D (2021) Nano Energy 88:106242. https://doi.org/10.1016/j.nanoen.2021.106242

    Article  CAS  Google Scholar 

  13. Eftekhari A, Li L, Yang Y (2017) J Power Sources 347:86–107. https://doi.org/10.1016/j.jpowsour.2017.02.054

    Article  CAS  Google Scholar 

  14. Vonlanthen D, Lazarev P, See KA, Wudl F, Heeger AJ (2014) Adv Mater 26:5095–5100. https://doi.org/10.1002/adma.201400966

    Article  CAS  PubMed  Google Scholar 

  15. Heme HN, Alif MSN, Rahat SMSM, Shuchi SB (2021) J Energy Storage 42:103018. https://doi.org/10.1016/j.est.2021.103018

    Article  Google Scholar 

  16. Wang H, Lin J, Shen ZX (2016) J Sci: Adv Mater Devices 1:225–255. https://doi.org/10.1016/j.jsamd.2016.08.001

    Article  Google Scholar 

  17. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) J Phys Chem C 115:23584–23590. https://doi.org/10.1021/jp203852p

    Article  CAS  Google Scholar 

  18. Klimont AA, Stakhanova SV, Semushin KA, Astakhov MV, Kalashnik AT, Galimzyanov RR, Krechetov IS, Kundu M (2017) J Surf Investig: X-ray, Synchrotron Neutron Tech 11:940–947. https://doi.org/10.1134/S1027451017050081

    Article  CAS  Google Scholar 

  19. Liu T, Li Y (2020) InfoMat 2:807–842. https://doi.org/10.1002/inf2.12105

    Article  CAS  Google Scholar 

  20. Wang Z, Jiang L, Wei Y, Zong C (2020) J Energy Storage 32:101742. https://doi.org/10.1016/j.est.2020.101742

    Article  Google Scholar 

  21. Chen P, Yang J, Guo K (2021) Macromol Mater Eng 306:2100274. https://doi.org/10.1002/mame.202100274

    Article  CAS  Google Scholar 

  22. Liu Y, Qin Z, Shen Y, Dou Z, Liu N (2022) Carbon 186:688–698. https://doi.org/10.1016/j.carbon.2021.10.066

    Article  CAS  Google Scholar 

  23. Han X, Huang Z-H, Meng F, Jia B, Ma T (2022) J Energy Chem 64:136–143. https://doi.org/10.1016/j.jechem.2021.04.035

    Article  CAS  Google Scholar 

  24. Tjandra R, Liu W, Zhang M, Yu A (2019) J Power Sources 438:227009. https://doi.org/10.1016/j.jpowsour.2019.227009

    Article  CAS  Google Scholar 

  25. Li J, Qiu S, Liu B, Chen H, Xiao D, Li H (2021) J Power Sources 483:229219. https://doi.org/10.1016/j.jpowsour.2020.229219

    Article  CAS  Google Scholar 

  26. Li X, Zhang P, Huang H, Zhai X, Chen B, He Y, Guo Z (2021) ECS J Solid State Sci Technol 10:013005. https://doi.org/10.1149/2162-8777/abdd84

    Article  CAS  Google Scholar 

  27. Xinping H, Bo G, Guibao W, Jiatong W, Chun Z (2013) Electrochim Acta 111:210–215. https://doi.org/10.1016/j.electacta.2013.07.226

    Article  CAS  Google Scholar 

  28. Zhang M, Wang X, Yang T, Zhang P, Wei X, Zhang L, Li H (2020) Synth Met 268:116484. https://doi.org/10.1016/j.synthmet.2020.116484

    Article  CAS  Google Scholar 

  29. Du X, Shi X, Li Y, Cao K (2020) Int J Energy Res 45:6227–6238. https://doi.org/10.1002/er.6243

    Article  CAS  Google Scholar 

  30. Gao X, Zhang H, Yue H, Yao F, Zhang X, Guo E, Ma Y, Wang Z, Wang Y (2020) ChemistrySelect 5:11004–11009. https://doi.org/10.1002/slct.202002801

    Article  CAS  Google Scholar 

  31. Li T, Wang X, Liu P, Yang B, Diao S, Gao Y (2020) J Electroanal Chem 860:113908. https://doi.org/10.1016/j.jelechem.2020.113908

    Article  CAS  Google Scholar 

  32. Xu A, Li W, Yu Y, Zhang Y, Liu Z, Qin Y (2021) Electrochim Acta 398:139330. https://doi.org/10.1016/j.electacta.2021.139330

    Article  CAS  Google Scholar 

  33. Chen B, Song Q, Zhou Z, Lu C (2021) Adv Mater Interfaces 8:2002168. https://doi.org/10.1002/admi.202002168

    Article  CAS  Google Scholar 

  34. Pallavolu MR, Gaddam N, Banerjee AN, Nallapureddy RR, Kumar YA, Joo SW (2022) Electrochim Acta 407:139868. https://doi.org/10.1016/j.electacta.2022.139868

    Article  CAS  Google Scholar 

  35. Li X, Huang H, Zhang P, Zhai X, Chen B, He Y, Guo Z (2022) J Mater Sci: Mater Electron 33:1918–1929. https://doi.org/10.1007/s10854-021-07393-1

    Article  CAS  Google Scholar 

  36. Liu Y, Zhou H, Zhou W, Meng S, Qi C, Liu Z, Kong T (2021) Adv Energy Mater 11:2101329. https://doi.org/10.1002/aenm.202101329

    Article  CAS  Google Scholar 

  37. Yao M, Zhao X, Zhang Q, Zhang Y, Wang Y (2021) Electrochim Acta 390:138804. https://doi.org/10.1016/j.electacta.2021.138804

    Article  CAS  Google Scholar 

  38. Han J, Wang S, Zhu S, Huang C, Yue Y, Mei C, Xu X, Xia C (2019) ACS Appl Mater Interfaces 11:44624–44635. https://doi.org/10.1021/acsami.9b16458

    Article  CAS  PubMed  Google Scholar 

  39. Xie Y, Mu Y (2021) Electrochim Acta 391:138953. https://doi.org/10.1016/j.electacta.2021.138953

    Article  CAS  Google Scholar 

  40. Huang H, Abbas SC, Deng Q, Ni Y, Cao S, Ma X (2021) J Power Sources 498:229886. https://doi.org/10.1016/j.jpowsour.2021.229886

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [grant No. 51972289, 51572247]. Thanks for the equipment support by Neware Technology Limited (Shenzhen, China).

Author information

Authors and Affiliations

Authors

Contributions

Yuanhao Wang: Conceptualization, Methodology, Validation, Investigation, Visualization, Writing-original draft. Zhibing Zhu: Resources, Supervision, Data curation, Project administration, Funding acquisition. Jingwei Chen: Writing-Review&Editing, Supervision. Lei Chu: Funding acquisition. Feng Sun: Funding acquisition. Weiwei Li: Data Curation. Kai Wan: Data Curation. Yue Zhang: Funding acquisition. Wei Wang: Resources, Supervision, Project administration, Funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zhibin Zhu or Wei Wang.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhu, Z., Chen, J. et al. Homogeneously deposited polyaniline on etched porous carbon cloth towards advanced supercapacitor electrode. Ionics 29, 4887–4895 (2023). https://doi.org/10.1007/s11581-023-05217-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05217-2

Keywords

Navigation