Skip to main content
Log in

Capacitive lithium storage of carved mesoporous titania

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

TiO2 is a potential anode for lithium-ion batteries. The low theoretical capacity and inferior reaction kinetics limit its wide applications. In this work, the H2Ti3O7 nanorods were prepared by hydrothermal reaction and washed with HCl, deionized water, and ethanol. The TiO2 nanorods possessing the mesoporous structure with several nanometers were obtained by annealing H2Ti3O7 at different temperatures (300 °C, 400 °C, and 500 °C) under Ar atmosphere. The carved mesoporous structure can form channels for the transport of electrolyte ions into the interior. So the prepared TiO2 exhibited superior rate performance compared to general TiO2. As expected, the first discharge and charge capacity of TiO2-400 were 248 and 192 mA h g−1, and the corresponding Coulombic efficiency for the first cycle was 77%. Furthermore, the high rate performance paved the way for future research on Li-ion batteries based on TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets and the materials used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  2. Xu J, Zhang J, Pollard TP, Li Q, Tan S, Hou S, Wan H, Chen F, He H, Hu E, Xu K, Yang XQ, Borodin O, Wang C (2023) Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614:694–700

    Article  CAS  PubMed  Google Scholar 

  3. Xu J, Pollard TP, Yang C, Dandu NK, Tan S, Zhou J, Wang J, He X, Zhang X, Li A-M, Hu E, Yang X-Q, Ngo A, Borodin O, Wang C (2023) Lithium halide cathodes for Li metal batteries. Joule 7:83–94

    Article  CAS  Google Scholar 

  4. Wang S, Li X, Cheng T, Liu Y, Li Q, Bai M, Liu X, Geng H, Lai W-Y, Huang W (2022) Highly conjugated three-dimensional covalent organic frameworks with enhanced Li-ion conductivity as solid-state electrolytes for high-performance lithium metal batteries. J Mater Chem A 10:8761–8771

    Article  CAS  Google Scholar 

  5. Wang Q, Wang S, Lu T, Guan L, Hou L, Du H, Wei H, Liu X, Wei Y, Zhou H (2022) Ultrathin solid polymer electrolyte design for high-performance Li metal batteries: a perspective of synthetic chemistry. Adv Sci 10:2205233

    Article  Google Scholar 

  6. Wang S, Bai M, Liu C, Li G, Lu X, Cai H, Liu C, Lai W-Y (2022) Highly stretchable multifunctional polymer ionic conductor with high conductivity based on organic-inorganic dual networks. Chem Eng J 440:135824

    Article  CAS  Google Scholar 

  7. Liu Y, Zeng Q, Li Z, Chen A, Guan J, Wang H, Wang S, Zhang L (2023) Recent development in topological polymer electrolytes for rechargeable lithium batteries. Adv Sci 2206978

  8. Zhang L, Gao H, Xiao S, Li J, Ma T, Wang Q, Liu W, Wang S (2022) In-situ construction of ceramic-polymer all-solid-state electrolytes for high-performance room-temperature lithium metal batteries. ACS Mater Lett 4:1297–1305

    Article  CAS  Google Scholar 

  9. Wang S, Cheng T, Zhang YZ, Wu X, Xiao S, Lai W-Y (2022) Deformable lithium-ion batteries for wearable and implantable electronics. Appl Phys Rev 9:041310

    Article  CAS  Google Scholar 

  10. Zhang L, Gao H, Guan L, Li Y, Wang Q (2023) Polyzwitterion-SiO2 double-network polymer electrolyte with high strength and high ionic conductivity. Polymers 15:466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Winter M, Barnett B, Xu K (2018) Before Li ion batteries. Chem Rev 118:11433–11456

    Article  CAS  PubMed  Google Scholar 

  12. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Liu L, Wang J, Zhuang Y, Wang B, Zheng S (2023) Freestanding TiO2 nanoparticle-embedded high directional carbon composite host for high-loading low-temperature lithium-sulfur batteries. ACS Sustain Chem Eng 11:3657–3663

    Article  CAS  Google Scholar 

  14. Zhang M, Lu A, Li H, LiM WJ, Wang C (2023) Defective TiO2-supported dual-Schottky heterostructure boosts fast reaction kinetics for high performance lithium-ion storage. ACS Appl Energy Mater 6:1781–1798

    Article  CAS  Google Scholar 

  15. Lee KJ, Bak W, Kim J-J, Snyder MA, Yoo WC, Sung Y-E (2015) How pore parameters affect Li ion depletion in mesoporous materials for lithium-ion batteries. J Phys Chem C 119:7604–7613

    Article  CAS  Google Scholar 

  16. Saravanan K, Ananthanarayanan K, Balaya PE (2010) Mesoporous TiO2 with high packing density for superior lithium storage. Environ Sci 3:939–948

    CAS  Google Scholar 

  17. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  PubMed  Google Scholar 

  18. Chen D, Caruso RA (2013) Recent progress in the synthesis of spherical titania nanostructures and their applications. Adv Funct Mater 23:1356–1374

    Article  CAS  Google Scholar 

  19. Koudriachova MV, Harrison NM, de Leeuw SW (2001) Effect of diffusion on lithium intercalation in titanium dioxide. Phys Rev Lett 86:1275

    Article  CAS  PubMed  Google Scholar 

  20. Lunell S, Stashans A, Ojamae L, Lindstrom H, Hagfeldt A (1997) Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment. J Am Chem Soc 119:7374–7380

    Article  CAS  Google Scholar 

  21. Xu J, Ding W, Yin G, Tian Z, Zhang S, Hong Z, Huang F (2018) Capacitive lithium storage of lithiated mesoporous titania. Materials Today Energy 9:240–246

    Article  Google Scholar 

  22. Shi H, Shi C, Jia Z, Li A, HeB LT, Chen J (2023) Flower-like TiO2 and TiO2@C composites prepared via a one-pot solvothermal method as anode materials for lithium-ion batteries: higher capacity and excellent cycling stability. Dalton Transactions 52:4214–4223

    Article  CAS  PubMed  Google Scholar 

  23. Mishra S, Yogi P, Sagdeo PR, Kumar R (2018) TiO2-Co3O4 core-shell nanorods: bifunctional role in better energy storage and electrochromism. ACS Appl Energ Mater 1:790–798

    Article  CAS  Google Scholar 

  24. Etacheri V, Yourey JE, Bartlett BM (2014) Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. ACS Nano 8:1491–1499

    Article  CAS  PubMed  Google Scholar 

  25. Yarali M, Biçer E, Gürsel SA, Yürüm A (2016) Expansion of titanate nanotubes by the use of a surfactant and its improved performance as an anode in Li-ion batteries. Electrochimica Acta 220:453–464

    Article  CAS  Google Scholar 

  26. Li S, Song Y, Wan Y, Zhang J, Liu X (2023) Hierarchical TiO2 nanoflowers percolated with carbon nanotubes for long-life lithium storage. J Electroanal Chem 934:117305

    Article  CAS  Google Scholar 

  27. Luo B, Wang W, Wang Q, Ji W, Yu G, Liu Z, Zhao Z, Wang X, Wang S, Zhang J (2023) Facilitating ionic conductivity and interfacial stability via oxygen vacancies-enriched TiO2 microrods for composite polymer electrolytes. Chem Eng J 460:141329

    Article  CAS  Google Scholar 

  28. Shen S, Jiang X, Zheng Y, Xue X-X, Feng Y, Zeng J, Chen K-Q (2023) Fast carrier diffusion via synergistic effects between lithium-ions and polarons in rutile TiO2. Phys Chem Chem Phys 25:7519–7526

    Article  CAS  PubMed  Google Scholar 

  29. Takami N, Harada Y, Iwasaki T, Hoshina K, YoshidaY (2015) Micro-size spherical TiO2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries. J Power Sources 273:923–930

    Article  CAS  Google Scholar 

  30. Duan J, Hou H, Liu X, Yan C, Liu S, Meng R, Hao Z, Yao Y, Liao Q (2016) In situ Ti3+-doped TiO2 nanotubes anode for lithium ion battery. J Porous Mat 23:837–843

    Article  CAS  Google Scholar 

  31. Han H, Song T, Lee E-K, Devadoss A, Jeon Y, Ha J, Chung Y-C, Choi Y-M, Jung Y-G, Paik U (2012) Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries. ACS Nano 6:8308–8315

    Article  CAS  PubMed  Google Scholar 

  32. Sudant G, Baudrin E, Larcher D, Tarascon JM (2005) Electrochemical lithium reactivity with nanotextured anatase-type TiO2. J Mater Chem 15:1263–1269

    CAS  Google Scholar 

  33. Liang S, Wang X, Qi R, Cheng Y-J, Xia Y, Mueller-Buschbaum P, Hu X (2022) Bronze-phase TiO2 as anode materials in lithium and sodium-ion batteries. Adv Funct Mater 32:2201675

    Article  CAS  Google Scholar 

  34. Pan JH, Zhang X, Du AJ, Sun DD, Leckie JO (2008) Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. J Am Chem Soc 130:11256–11257

    Article  CAS  PubMed  Google Scholar 

  35. Wang Z, Lou XW (2012) TiO2 nanocages: fast synthesis, interior functionalization and improved lithium storage properties. Adv Mater 24:4124–4129

    Article  CAS  PubMed  Google Scholar 

  36. Yin H, Lin TQ, Yang CY, Wang Z, Zhu GL, Xu T, Xie XM, Huang FQ, Jiang MH (2013) Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. Chem-Eur J 19:13313–13316

    Article  CAS  PubMed  Google Scholar 

  37. Wang DH, Choi D, Yang ZG, Viswanathan VV, Nie Z, Wang CM, Song YJ, Zhang JG, Liu J (2008) Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile TiO2. Chem Mater 20:3435–3442

    Article  CAS  Google Scholar 

  38. Armstrong G, Armstrong AR, Bruce PG, Reale P, Scrosati B (2006) TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv Mater 18:2597

    Article  CAS  Google Scholar 

  39. Li JR, Tang ZL, Zhang ZT (2005) Layered hydrogen titanate nanowires with novel lithium intercalation properties. Chem Mater 17:5848–5855

    Article  CAS  Google Scholar 

  40. Park MS, Ma SB, Lee DJ, Im D, Doo SG, Yamamoto O (2014) A highly reversible lithium metal anode. Sci Rep 4:3815

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li Y, Huang Y, Zheng Y, Huang R, Yao J (2019) Facile and efficient synthesis of Α-Fe2o3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries. J Power Sources 416:62–71

    Article  CAS  Google Scholar 

  42. Zheng Y, Li Y, Yao J, Huang Y, Xiao S (2018) Facile synthesis of porous tubular nio with considerable pseudocapacitance as high capacity and long life anode for lithium-ion batteries. Ceram Int 44:2568–2577

    Article  CAS  Google Scholar 

  43. Kim H-S, Cook JB, Lin H, Ko JS, Tolbert SH, Ozolins V, Dunn B (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater 16:454–460

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 22109017), the General Natural Science Research Projects of Colleges and Universities in Anhui Province (Grant No. KJ2021B14), the Anhui Provincial Science and Technology Key R&D Program (Grant No. 2022a05020055), and the Key Research and Development Program of Anhui Province (Grant No. 202104b11020010).

Author information

Authors and Affiliations

Authors

Contributions

XW wrote the main manuscript text. GJ, LZ, and GC prepared Figs. 13. XW prepared Fig. 4 and the Supporting Information. All authors reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiaoqing Wang.

Ethics declarations

Ethical approval

This declaration is “not applicable.”

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Figure S1 (a) BET adsorption and desorption isotherm curves for TiO2-400. (b) BJH pore size distribution for TiO2-400. Figure S2 Nyquist plots of Li-TiO2-400 and anatase nanoparticles. Inset: Randles equivalent circuit for all tested electrodes. Figure S3 TEM images of TiO2-400 after 400 cycles at 0.2C

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Jin, G., Zhang, L. et al. Capacitive lithium storage of carved mesoporous titania. Ionics 29, 4907–4912 (2023). https://doi.org/10.1007/s11581-023-05179-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05179-5

Keywords

Navigation