Skip to main content

Advertisement

Log in

A review on metal-organic framework hybrid-based flexible electrodes for solid-state supercapacitors

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Most research and development efforts in the energy sector are currently focused on creating flexible, inexpensive, lightweight, wearable electronics that are also environmentally friendly and have a long lifetime. Supercapacitors (SCs) are appealing among portable power storage devices. The electrode material, its morphology, and fabrication procedures significantly impact the performance of SCs. SCs electrode material, electrolyte, and applications are frequently reviewed. To date, Metal-organic framework (MOFs) has been used in most energy storage devices and have proven essential. In addition to their distinct properties, MOFs are distinguished by their extensive internal surface areas, many conveniently accessible pores, highly structured crystalline framework, and considerable structural diversity. However, there are few reviews on MOF as the electrode material of SCs. The current mini-review provides an in-depth analysis of the use of MOFs as electrode material for SCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12.
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25:1419–1445

    Article  CAS  Google Scholar 

  2. Ahmad MW, Anand S, Dey B, Yang DJ, Choudhury A (2022) Asymmetric supercapacitors based on porous MnMoS4 nanosheets-anchored carbon nanofiber and N, S-doped carbon nanofiber electrodes. J Alloys Compd 906:164271. https://doi.org/10.1016/j.jallcom.2022.164271

    Article  CAS  Google Scholar 

  3. Ahmad MW, Anand S, Fatima A, Yang DJ, Choudhury A (2021) Facile synthesis of copper oxide nanoparticles-decorated polyaniline nanofibers with enhanced electrochemical performance as supercapacitor electrode. Polym Adv Technol 1–12. https://doi.org/10.1002/pat.5414

  4. Abas N, Kalair A, Khan N (2015) Review of fossil fuels and future energy technologies. Futures 69:31–49. https://doi.org/10.1016/j.futures.2015.03.003

    Article  Google Scholar 

  5. Ahmad W, Anand S, Dey B, Fatima A, Yang DJ, Choudhury A (2021) N/P/O/S heteroatom-doped porous carbon nano fiber mats derived from a polyacrylonitrile / L - cysteine / P 2 O 5 precursor for flexible electrochemical supercapacitors. ACS Appl. Energy Mater 4:12177–12190. https://doi.org/10.1021/acsaem.1c01790

    Article  CAS  Google Scholar 

  6. Benzigar MR, Dasireddy VDBC, Guan X, Wu T, Liu G (2020) Advances on emerging materials for flexible supercapacitors: current trends and beyond. Adv Funct Mater 30:2002993. https://doi.org/10.1002/adfm.202002993

  7. Anand S, Ahmad W, Khamis A, Al A, Yang D, Choudhury A (2020) Polyaniline nanofiber decorated carbon nanofiber hybrid mat for flexible electrochemical supercapacitor. Mater Chem Phys 54:123480. https://doi.org/10.1016/j.matchemphys.2020.123480

    Book  Google Scholar 

  8. Sundriyal S, Kaur H, Bhardwaj SK, Mishra S, Kim KH, Deep A (2018) Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coord Chem Rev 369:15–38

    Article  CAS  Google Scholar 

  9. Kumar P, Deep A, Kim KH (2015) Metal organic frameworks for sensing applications. Trends Analyt Chem 73:39–53

    Article  CAS  Google Scholar 

  10. Baumann AE, Burns DA, Liu B, Thoi VS (2019) Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun Chem 2:86. https://doi.org/10.1038/s42004-019-0184-6

  11. Xu Y, Li Q, Guo X, Zhang S, Li W, Pang H (2022) Metal organic frameworks and their composites for supercapacitor application. J Energy Storage 56:105819. https://doi.org/10.1016/j.est.2022.105819

  12. Sculley J, Yuan D, Zhou HC (2011) The current status of hydrogen storage in metal-organic frameworks - Updated. Energy Environ Sci 4:2721–2735

    Article  CAS  Google Scholar 

  13. Cui Y, Xu H, Yue Y, Guo Z, Yu J, Chen Z, Gao J, Yang Y, Qian G, Chen B (2012) A luminescent mixed-lanthanide metal-organic framework thermometer. J Am Chem Soc 134:3979–3982. https://doi.org/10.1021/ja2108036

    Article  CAS  PubMed  Google Scholar 

  14. Kong X, Scott E, Ding W, Mason JA, Long JR, Reimer JA (2012) CO 2 dynamics in a metal-organic framework with open metal sites. J Am Chem Soc 134:14341–14344. https://doi.org/10.1021/ja306822p

    Article  CAS  PubMed  Google Scholar 

  15. Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi OM (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877. https://doi.org/10.1021/ja809459e

    Article  CAS  PubMed  Google Scholar 

  16. Zhang H, Nai J, Yu L, Lou XW (2017) Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1:77–107

    Article  CAS  Google Scholar 

  17. Deep A, Bhardwaj SK, Paul AK, Kim KH, Kumar P (2015) Surface assembly of nano-metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. Biosens Bioelectron 65:226–231. https://doi.org/10.1016/j.bios.2014.10.045

    Article  CAS  PubMed  Google Scholar 

  18. Vellingiri K, Szulejko JE, Kumar P, Kwon EE, Kim KH, Deep A, Boukhvalov DW, Brown RJC (2016) Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Sci Rep 6. https://doi.org/10.1038/srep27813

  19. Dey C, Kundu T, Banerjee R (2012) Reversible phase transformation in proton conducting Strandberg-type POM based metal organic material. Chem Commun 48:266–268. https://doi.org/10.1039/c1cc15162b

    Article  CAS  Google Scholar 

  20. Shultz AM, Farha OK, Hupp JT, Nguyen ST (2009) A catalytically active, permanently microporous MOF with metalloporphyrin struts. J Am Chem Soc 131:4204–4205. https://doi.org/10.1021/ja900203f

    Article  CAS  PubMed  Google Scholar 

  21. Lee YR, Kim J, Ahn WS (2013) Synthesis of metal-organic frameworks: a mini review. Korean J Chem Eng 30:1667–1680

    Article  CAS  Google Scholar 

  22. Ni Z, Masel RI (2006) Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J Am Chem Soc 128:12394–12395. https://doi.org/10.1021/ja0635231

    Article  CAS  PubMed  Google Scholar 

  23. Kim J, Yang ST, Choi SB, Sim J, Kim J, Ahn WS (2011) Control of catenation in CuTATB-n metal-organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J Mater Chem 21:3070–3076. https://doi.org/10.1039/c0jm03318a

    Article  CAS  Google Scholar 

  24. Jiao Y, Pei J, Chen D, Yan C, Hu Y, Zhang Q, Chen G (2017) Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J Mater Chem A 5:1094–1102. https://doi.org/10.1039/C6TA09805C

    Article  CAS  Google Scholar 

  25. Morozan A, Jaouen F (2012) Metal organic frameworks for electrochemical applications. Energy Environ Sci 5:9269–9290

    Article  CAS  Google Scholar 

  26. Li S, Yang K, Tan C, Huang X, Huang W, Zhang H (2016) Preparation and applications of novel composites composed of metal-organic frameworks and two-dimensional materials. Chem Commun 52:1555–1562. https://doi.org/10.1039/c5cc09127f

    Article  CAS  Google Scholar 

  27. Ahmad MW, Choudhury A, Dey B, Anand S, Al Saidi AKA, Lee GH, Yang DJ (2022) Three-dimensional core-shell niobium-metal organic framework@carbon nanofiber mat as a binder-free positive electrode for asymmetric supercapacitor. J Energy Storage 55. https://doi.org/10.1016/j.est.2022.105484

  28. Sun JK, Xu Q (2014) Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ Sci 7:2071–2100

    Article  CAS  Google Scholar 

  29. Meng Y, Wang GH, Bernt S, Stock N, Lu AH (2011) Crystal-like microporous hybrid solid nanocast from Cr-MIL-101. Chem Commun 47:10479–10481. https://doi.org/10.1039/c1cc13699b

    Article  CAS  Google Scholar 

  30. He Y, Yang S, Fu Y, Wang F, Ma J, Wang G, Chen G, Wang M, Dong R, Zhang P, Feng X (2021) Electronic doping of metal-organic frameworks for high-performance flexible micro-supercapacitors. Small Struct 2:2000095. https://doi.org/10.1002/sstr.202000095

    Article  CAS  Google Scholar 

  31. Zhang C, Xiao J, Lv X, Qian L, Yuan S, Wang S, Lei P (2016) Hierarchically porous Co3O4/C nanowire arrays derived from a metal-organic framework for high performance supercapacitors and the oxygen evolution reaction. J Mater Chem A 4:16516–16523. https://doi.org/10.1039/c6ta06314d

    Article  CAS  Google Scholar 

  32. Peng W, Song N, Su Z, Wang J, Chen K, Li S, Wei B, Luo S, Xie A (2022) Two-dimensional MoS2/Mn-MOF/multi-walled carbon nanotubes composite material for high-performance supercapacitors. Microchem J 179. https://doi.org/10.1016/j.microc.2022.107506

  33. Yang SY, Wang YF, Yue Y, Bian SW (2019) Flexible polyester yarn/Au/conductive metal-organic framework composites for yarn-shaped supercapacitors. J Electroanal Chem 847. https://doi.org/10.1016/j.jelechem.2019.113218

  34. Hussain F, Jeong J, Park S, Jeong E, Kang SJ, Yoon K, Kim J (2020) Fabrication and characterization of a novel terpolyester film: An alternative substrate polymer for flexible electronic devices. Polymer 210. https://doi.org/10.1016/j.polymer.2020.123019

  35. Xiong S, Jiang S, Wang J, Lin H, Lin M, Weng S, Liu S, Jiao Y, Xu Y, Chen J (2020) A high-performance hybrid supercapacitor with NiO derived NiO@Ni-MOF composite electrodes. Electrochim Acta 340. https://doi.org/10.1016/j.electacta.2020.135956

  36. Yan Y, Gu P, Zheng S, Zheng M, Pang H, Xue H (2016) Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J Mater Chem A 4:19078–19085. https://doi.org/10.1039/c6ta08331e

    Article  CAS  Google Scholar 

  37. Wang B, Liu S, Liu L, Song WW, Zhang Y, Wang SM, Han ZB (2021) MOF/PEDOT/HPMo-based polycomponent hierarchical hollow micro-vesicles for high performance flexible supercapacitors. J Mater Chem A 9:2948–2958. https://doi.org/10.1039/d0ta10603h

    Article  CAS  Google Scholar 

  38. Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137:4920–4923. https://doi.org/10.1021/jacs.5b01613

    Article  CAS  PubMed  Google Scholar 

  39. Liu XX, He Q, Wang Y, Wang J, Xiang Y, Blackwood DJ, Wu R, Chen JS (2020) MOF-reinforced Co9S8 self-supported nanowire arrays for highly durable and flexible supercapacitor. Electrochim Acta 346. https://doi.org/10.1016/j.electacta.2020.136201

  40. Liu S, Kang L, Zhang J, Jung E, Lee S, Jun SC (2020) Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Stor Mater 32:167–177. https://doi.org/10.1016/j.ensm.2020.07.017

    Article  Google Scholar 

  41. Yang J, Li P, Wang L, Guo X, Guo J, Liu S (2019) In-situ synthesis of Ni-MOF@CNT on graphene/Ni foam substrate as a novel self-supporting hybrid structure for all-solid-state supercapacitors with a high energy density. J Electroanal Chem 848. https://doi.org/10.1016/j.jelechem.2019.113301

  42. Zhang J, Huang J, Wang L, Sun P, Wang P, Yao Z, Yang Y (2022) Coupling bimetallic NiMn-MOF nanosheets on NiCo2O4 nanowire arrays with boosted electrochemical performance for hybrid supercapacitor. Mater Res Bull 149. https://doi.org/10.1016/j.materresbull.2021.111707

  43. Xu X, Tang J, Qian H, Hou S, Bando Y, Hossain MSA, Pan L, Yamauchi Y (2017) Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl Mater Interfaces 9:38737–38744. https://doi.org/10.1021/acsami.7b09944

    Article  CAS  PubMed  Google Scholar 

  44. Cheng C, Xu J, Gao W, Jiang S, Guo R (2019) Preparation of flexible supercapacitor with RGO/Ni-MOF film on Ni-coated polyester fabric. Electrochim Acta 318:23–31. https://doi.org/10.1016/j.electacta.2019.06.055

    Article  CAS  Google Scholar 

  45. Zhao G, Xu X, Zhu G, Shi J, Li Y, Zhang S, Hossain MSA, Wu KCW, Tang J, Yamauchi Y (2020) Flexible nitrogen-doped carbon heteroarchitecture derived from ZIF-8/ZIF-67 hybrid coating on cotton biomass waste with high supercapacitive properties. Microporous Mesoporous Mater 303. https://doi.org/10.1016/j.micromeso.2020.110257

  46. Ramandia S, Entezari MH (2022) Self-supporting electrode for flexible supercapacitors: NiCo-layered double hydroxide derived from metal organic frameworks wrapped on graphene/polyaniline nanotubes@cotton cloth. J Energy Storage 56:106106

    Article  Google Scholar 

  47. Hekmat F, Shahrokhian S, Taghavinia N (2018) Ultralight flexible asymmetric supercapacitors based on manganese dioxide-polyaniline nanocomposite and reduced graphene oxide electrodes directly deposited on foldable cellulose papers. J Phys Chem C 122:27156–27168. https://doi.org/10.1021/acs.jpcc.8b07464

    Article  CAS  Google Scholar 

  48. Zhang YZ, Cheng T, Wang Y, Lai WY, Pang H, Huang W (2016) A simple approach to boost capacitance: flexible supercapacitors based on manganese Oxides@MOFs via chemically induced in situ self-transformation. Adv Mater 28:5242–5248. https://doi.org/10.1002/adma.201600319

    Article  CAS  PubMed  Google Scholar 

  49. Wang M, Shi H, Zhang P, Liao Z, Wang M, Zhong H, Schwotzer F, Nia AS, Zschech E, Zhou S, Kaskel S, Dong R, Feng X (2020) Phthalocyanine-based 2D conjugated metal-organic framework nanosheets for high-performance micro-supercapacitors. Adv Funct Mater 30. https://doi.org/10.1002/adfm.202002664

  50. Yue Y, Yang SY, Huang YL, Sun B, Bian SW (2020) Reduced graphene oxide/polyester yarns supported conductive metal−organic framework nanorods as novel electrodes for all-solid-state supercapacitors. Energy Fuel 34:16879–16884. https://doi.org/10.1021/acs.energyfuels.0c03380

    Article  CAS  Google Scholar 

  51. Rong Q, Lei W, Huang J, Liu M (2018) Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv Energy Mater 8. https://doi.org/10.1002/aenm.201801967

  52. Anand S, Choudhury A (2023) MnMoS4 anchored at carbon nanofiber as a flexible electrode for solid-state asymmetric supercapacitor device. Mater Chem Phys 299:127517. https://doi.org/10.1016/j.matchemphys.2023.127517

    Article  CAS  Google Scholar 

  53. Anand S, Ahmad W, Fatima A, Kumar A (2021) Flexible nickel disulfide nanoparticles- anchored carbon nano fiber hybrid mat as a flexible binder-free cathode for solid-state asymmetric supercapacitors. Nanotechnology 32:495403. https://doi.org/10.1088/1361-6528/ac20fd

  54. Ahmad MW, Anand S, Shalini K, Ul-Islam M, Yang DJ, Choudhury A (2021) MnMoO4 nanorods-encapsulated carbon nanofibers hybrid mat as binder-free electrode for flexible asymmetric supercapacitors. Mater Sci Semicond Process 136. https://doi.org/10.1016/j.mssp.2021.106176

  55. Xue Q, Sun J, Huang Y, Zhu M, Pei Z, Li H, Wang Y, Li N, Zhang H, Zhi C (2017) Recent Progress on Flexible and Wearable Supercapacitors. Small 13. https://doi.org/10.1002/smll.201701827

  56. Cheng J, Chen S, Chen D, Dong L, Wang J, Zhang T, Jiao T, Liu B, Wang H, Kai JJ, Zhang D, Zheng G, Zhi L, Kang F, Zhang W (2018) Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal-organic framework/reduced graphene oxide self-assembled papers. J Mater Chem A 6:20254–20266. https://doi.org/10.1039/c8ta06785f

    Article  CAS  Google Scholar 

  57. Cao XM, Sun ZJ, Zhao SY, Wang B, Han ZB (2018) MOF-derived sponge-like hierarchical porous carbon for flexible all-solid-state supercapacitors. Mater Chem Front 2:1692–1699. https://doi.org/10.1039/c8qm00284c

    Article  CAS  Google Scholar 

  58. Du Y, Li G, Chen M, Yang X, Ye L, Liu X, Zhao L (2019) Hollow nickel-cobalt-manganese hydroxide polyhedra via MOF templates for high-performance quasi-solid-state supercapacitor. Chem Eng J 378. https://doi.org/10.1016/j.cej.2019.122210

  59. Zhang J, Li Y, Han M, Xia Q, Chen Q, Chen M (2021) Constructing ultra-thin Ni-MOF@NiS2 nanosheets arrays derived from metal organic frameworks for advanced all-solid-state asymmetric supercapacitor. Mater Res Bull 137. https://doi.org/10.1016/j.materresbull.2020.111186

  60. Chhetri K, Dahal B, Tiwari AP, Mukhiya T, Muthurasu A, Ojha GP, Lee M, Kim T, Chae SH, Kim HY (2021) Controlled selenium infiltration of cobalt phosphide nanostructure arrays from a two-dimensional cobalt metal-organic framework: a self-supported electrode for flexible quasi-solid-state asymmetric supercapacitors. ACS Appl Energy Mater 4:404–415. https://doi.org/10.1021/acsaem.0c02340

    Article  CAS  Google Scholar 

  61. Ye C, Qin Q, Liu J, Mao W, Yan J, Wang Y, Cui J, Zhang Q, Yang L, Wu Y (2019) Coordination derived stable Ni-Co MOFs for foldable all-solid-state supercapacitors with high specific energy. J Mater Chem A 7:4998–5008. https://doi.org/10.1039/c8ta11948a

    Article  CAS  Google Scholar 

  62. Du Y, Liang R, Wu J, Ye Y, Chen S, Yuan J, Chen J, Xiao P (2022) High-performance quasi-solid-state flexible supercapacitors based on a flower-like NiCo metal-organic framework. RSC Adv 12:5910–5918. https://doi.org/10.1039/d1ra08785a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jia SS, Xu WS, Chen Y, Liu Y (2021) Pyrrole/macrocycle/MOF supramolecular co-assembly for flexible solid state supercapacitors. Chin Chem Lett 32:2773–2776. https://doi.org/10.1016/j.cclet.2021.03.002

    Article  CAS  Google Scholar 

  64. Li G, Cai H, Li X, Zhang J, Zhang D, Yang Y, Xiong J (2019) Construction of hierarchical NiCo2O4@Ni-MOF hybrid arrays on carbon cloth as superior battery-type electrodes for flexible solid-state hybrid supercapacitors. ACS Appl Mater Interfaces 11:37675–37684. https://doi.org/10.1021/acsami.9b11994

    Article  CAS  PubMed  Google Scholar 

  65. Liu W, Wang K, Li C, Zhang X, Sun X, Han J, Wu XL, Li F, Ma Y (2018) Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte. J Mater Chem A 6:24979–24987. https://doi.org/10.1039/C8TA09839E

    Article  CAS  Google Scholar 

  66. Ren F, Ji Y, Chen F, Qian Y, Tian J, Wang J (2021) Flower-like bimetal Ni/Co-based metal-organic-framework materials with adjustable components toward high performance solid-state supercapacitors. Mater Chem Front 5:7333–7342. https://doi.org/10.1039/d1qm00940k

    Article  CAS  Google Scholar 

  67. Zhao Y, Dong H, Yu J, Chen R, Liu Q, Liu J, Li R, Wang X, Wang J (2021) Binder-free metal-organic frameworks-derived CoP/Mo-doped NiCoP nanoplates for high-performance quasi-solid-state supercapacitors. Electrochim Acta 390:138840. https://doi.org/10.1016/j.electacta.2021.138840

  68. Shao L, Wang Q, Ma Z, Ji Z, Wang X, Song D, Liu Y, Wang N (2018) A high-capacitance flexible solid-state supercapacitor based on polyaniline and metal-organic framework (UiO-66) composites. J Power Sources 379:350–361. https://doi.org/10.1016/j.jpowsour.2018.01.028

    Article  CAS  Google Scholar 

  69. Sundriyal S, Shrivastav V, Mishra S, Deep A (2020) Enhanced electrochemical performance of nickel intercalated ZIF-67/rGO composite electrode for solid-state supercapacitors. Int J Hydrog Energy 45:30859–30869. https://doi.org/10.1016/j.ijhydene.2020.08.075

    Article  CAS  Google Scholar 

  70. Tian D, Ao Y, Li W, Xu J, Wang C (2021) General fabrication of metal-organic frameworks on electrospun modified carbon nanofibers for high-performance asymmetric supercapacitors. J Colloid Interface Sci 603:199–209. https://doi.org/10.1016/j.jcis.2021.05.138

    Article  CAS  PubMed  Google Scholar 

  71. Wang Q, Shao L, Ma Z, Xu J, Li Y, Wang C (2018) Hierarchical porous PANI/MIL-101 nanocomposites based solid-state flexible supercapacitor. Electrochim Acta 281:582–593. https://doi.org/10.1016/j.electacta.2018.06.002

    Article  CAS  Google Scholar 

  72. Wang YF, Yang SY, Yue Y, Bian SW (2020) Conductive copper-based metal-organic framework nanowire arrays grown on graphene fibers for flexible all-solid-state supercapacitors. J Alloys Compd 835. https://doi.org/10.1016/j.jallcom.2020.155238

  73. Zhang F, Ma J, Yao H (2019) Ultrathin Ni-MOF nanosheet coated NiCo2O4 nanowire arrays as a high-performance binder-free electrode for flexible hybrid supercapacitors. Ceram Int 45:24279–24287. https://doi.org/10.1016/j.ceramint.2019.08.140

    Article  CAS  Google Scholar 

  74. Zhang H, Wang J, Sun Y, Zhang X, Yang H, Lin B (2021) Wire spherical-shaped Co-MOF electrode materials for high-performance all-solid-state flexible asymmetric supercapacitor device. J Alloys Compd 879. https://doi.org/10.1016/j.jallcom.2021.160423

  75. Li H, Wang X, Dai L, Guo F, Mi H, Ji C, Sun L (2022) Kinetics-favorable ultrathin NiCo-MOF nanosheets with boosted pseudocapacitive charge storage for quasi-solid-state hybrid supercapacitors. Inorg Chem 61:3866–3874. https://doi.org/10.1021/acs.inorgchem.1c03316

    Article  CAS  PubMed  Google Scholar 

  76. Zhang W, Shahnavaz Z, Yan X, Huang X, Wu S, Chen H, Pan J, Li T, Wang J (2022) One-step solvothermal synthesis of raspberry-like NiCo-MOF for high-performance flexible supercapacitors for a wide operation temperature range. Inorg Chem 61:15287–15301. https://doi.org/10.1021/acs.inorgchem.2c02916

    Article  CAS  PubMed  Google Scholar 

  77. Kshetri T, Khumujam DD, Singh TI, Lee YS, Kim NH, Lee JH (2022) Co-MOF@MXene-carbon nanofiber-based freestanding electrodes for a flexible and wearable quasi-solid-state supercapacitor. Chem Eng J 437. https://doi.org/10.1016/j.cej.2022.135338

  78. Xu S, Liu R, Shi X, Ma Y, Hong M, Chen X, Wang T, Li F, Hu N, Yang Z (2020) A dual CoNi MOF nanosheet/nanotube assembled on carbon cloth for high performance hybrid supercapacitors. Electrochim Acta 342. https://doi.org/10.1016/j.electacta.2020.136124

  79. Chen Y, Ni D, Yang X, Liu C, Yin J, Cai K (2018) Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim Acta 278:114–123. https://doi.org/10.1016/j.electacta.2018.05.024

    Article  CAS  Google Scholar 

  80. Safari M, Mazloom J (2021) Electrochemical performance of spindle-like Fe2Co-MOF and derived magnetic yolk-shell CoFe2O4 microspheres for supercapacitor applications. J Solid State Electrochem 25:2189–2200. https://doi.org/10.1007/s10008-021-04989-9

    Article  CAS  Google Scholar 

  81. Krishnan S, Gupta AK, Singh MK, Guha N, Rai DK (2022) Nitrogen-rich Cu-MOF decorated on reduced graphene oxide nanosheets for hybrid supercapacitor applications with enhanced cycling stability. Chem Eng J 435. https://doi.org/10.1016/j.cej.2022.135042

  82. Safari M, Mazloom J (2023) Outstanding energy storage performance in Co[sbnd]Fe bimetallic metal-organic framework spindles via decorating with reduced graphene oxide nanosheets. J Energy Storage 58. https://doi.org/10.1016/j.est.2022.106390

  83. Salehi S, Ehsani MH, Aghazadeh M (2022) Novel electrodeposition of bud-like cobalt/zinc metal-organic-framework onto nickel foam as a high-performance binder-free electrode material for supercapacitor applications. Mater Lett 319. https://doi.org/10.1016/j.matlet.2022.132282

  84. Rabenau A (1985) The role of hydrothermal synthesis in preparative chemistry. Angwante Chem 4:1026–1040. https://doi.org/10.1002/anie.198510261

  85. Hoskins BF, Robson R (1990) Design and construction of a new class of scaffolding-like materials comprising Infinite Polymeric Frameworks of 3D-linked molecular rods. A Reappraisal of the Zn(CN)2 and Cd(CN)2 Structures and the Synthesis and Structure of the Diamond-Related Frameworks [N(CH3)4][Cu1Zn11(CN)4]and CUI[ 4,4”4”,4”’-tetracyanotetraphenylmethane] BF4~xC6H5NO2. J Am Chem Soc 112:1546–1554. https://doi.org/10.1021/ja00160a038

  86. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969

    Article  CAS  PubMed  Google Scholar 

  87. Millange F, el Osta R, Medina ME, Walton RI (2011) A time-resolved diffraction study of a window of stability in the synthesis of a copper carboxylate metal-organic framework. CrystEngComm 13:103–108. https://doi.org/10.1039/c0ce00530d

    Article  CAS  Google Scholar 

  88. Biemmi E, Christian S, Stock N, Bein T (2009) High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous Mesoporous Mater 117:111–117. https://doi.org/10.1016/j.micromeso.2008.06.040

    Article  CAS  Google Scholar 

  89. Zhao X, Tao K, Han L (2022) Self-supported metal-organic framework-based nanostructures as binder-free electrodes for supercapacitors. Nanoscale 14:2155–2166

    Article  CAS  PubMed  Google Scholar 

  90. Li Q, Dai Z, Wu J, Liu W, Di T, Jiang R, Zheng X, Wang W, Ji X, Li P, Xu Z, Qu X, Xu Z, Zhou J (2020) Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material for supercapacitor. Adv Energy Mater 10. https://doi.org/10.1002/aenm.201903750

  91. Taddei M, Steitz DA, Van Bokhoven JA, Ranocchiari M (2016) Continuous-flow microwave synthesis of metal-organic frameworks: a highly efficient method for large-scale production. Chem Eur J 22:3245–3249. https://doi.org/10.1002/chem.201505139

    Article  CAS  PubMed  Google Scholar 

  92. Boorboor Ajdari F, Kowsari E, Niknam Shahrak M, Ehsani A, Kiaei Z, Torkzaban H, Ershadi M, Kholghi Eshkalak S, Haddadi-Asl V, Chinnappan A, Ramakrishna S (2020) A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord Chem Rev 422:213441. https://doi.org/10.1016/j.ccr.2020.213441

  93. Cai C, Zou Y, Xiang C, Chu H, Qiu S, Sui Q, Xu F, Sun L, Shah A (2018) Broccoli-like porous carbon nitride from ZIF-8 and melamine for high performance supercapacitors. Appl Surf Sci 440:47–54. https://doi.org/10.1016/j.apsusc.2017.12.242

    Article  CAS  Google Scholar 

  94. Zhang MY, Song Y, Yang D, Qin Z, Guo D, Bian LJ, Sang XG, Sun X, Liu XX (2021) Redox poly-counterion doped conducting polymers for pseudocapacitive energy storage. Adv Funct Mater 31. https://doi.org/10.1002/adfm.202006203

  95. Yue T, Xia C, Liu X, Wang Z, Qi K, Xia BY (2021) Design and synthesis of conductive metal-organic frameworks and their composites for supercapacitors. ChemElectroChem 8:1021–1034

    Article  CAS  Google Scholar 

  96. Wang J, Zhong Q, Zeng Y, Cheng D, Xiong Y, Bu Y (2019) Rational construction of triangle-like nickel-cobalt bimetallic metal-organic framework nanosheets arrays as battery-type electrodes for hybrid supercapacitors. J Colloid Interface Sci 555:42–52. https://doi.org/10.1016/j.jcis.2019.07.063

    Article  CAS  PubMed  Google Scholar 

  97. Cheng Q, Tao K, Han X, Yang Y, Yang Z, Ma Q, Han L (2019) Ultrathin Ni-MOF nanosheet arrays grown on polyaniline decorated Ni foam as an advanced electrode for asymmetric supercapacitors with high energy density. Dalton Trans 48:4119–4123. https://doi.org/10.1039/c9dt00386j

    Article  CAS  PubMed  Google Scholar 

  98. Wan L, Wang P (2021) Recent progress on self-supported two-dimensional transition metal hydroxides nanosheets for electrochemical energy storage and conversion. Int J Hydrog Energy 46:8356–8376

    Article  CAS  Google Scholar 

  99. Xue Y, Zheng S, Xue H, Pang H (2019) Metal-organic framework composites and their electrochemical applications. J Mater Chem A 7:7301–7327

    Article  CAS  Google Scholar 

  100. Dai F, Wang X, Zheng S, Sun J, Huang Z, Xu B, Fan L, Wang R, Sun D, Wu ZS (2021) Toward high-performance and flexible all-solid-state micro-supercapacitors: MOF bulk vs MOF nanosheets. Chem Eng J 413. https://doi.org/10.1016/j.cej.2020.127520

  101. Zhao W, Chen T, Wang W, Jin B, Peng J, Bi S, Jiang M, Liu S, Zhao Q, Huang W (2020) Conductive Ni3(HITP)2 MOFs thin films for flexible transparent supercapacitors with high rate capability. Sci Bull 65:1803–1811. https://doi.org/10.1016/j.scib.2020.06.027

    Article  CAS  Google Scholar 

  102. Hung YH, Lin LY, Lin HY, Sung YS, Hsiao YJ, Li YC (2021) Enhanced energy storage ability of UIO66 active material on acid-treated carbon cloth for flexible supercapacitors. Electrochim Acta 380. https://doi.org/10.1016/j.electacta.2021.138241

  103. Qu C, Zhao B, Jiao Y, Chen D, Dai S, Deglee BM, Chen Y, Walton KS, Zou R, Liu M (2017) Functionalized bimetallic hydroxides derived from metal-organic frameworks for high performance hybrid supercapacitor with ex-ceptional cycling stability. ACS Energy Lett 2:1263–1269. https://doi.org/10.1021/acsenergylett.7b00265

  104. Hong J, Park SJ, Kim S (2019) Synthesis and electrochemical characterization of nanostructured Ni-Co-MOF/graphene oxide composites as capacitor electrodes. Electrochim Acta 311:62–71. https://doi.org/10.1016/j.electacta.2019.04.121

    Article  CAS  Google Scholar 

  105. Li W, Zhao X, Bi Q, Ma Q, Han L, Tao K (2021) Recent advances in metal-organic framework-based electrode materials for supercapacitors. Dalton Trans 50:11701–11710. https://doi.org/10.1039/d1dt02066h

    Article  CAS  PubMed  Google Scholar 

  106. Liu X, Zang W, Guan C, Zhang L, Qian Y, Elshahawy AM, Zhao D, Pennycook SJ, Wang J (2018) Ni-Doped Cobalt-Cobalt Nitride Heterostructure Arrays for High-Power Supercapacitors. ACS Energy Lett 3:2462–2469. https://doi.org/10.1021/acsenergylett.8b01393

    Article  CAS  Google Scholar 

  107. Yilmaz G, Yam KM, Zhang C, Fan HJ, Ho GW (2017) In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Adv Mater 29. https://doi.org/10.1002/adma.201606814

  108. Zha X, Shi L, Yang Y (2023) In situ vertically growth of 2D NiCo-BTC nanosheet arrays for binder-free flexible wearable energy storage devices. J Energy Storage 60. https://doi.org/10.1016/j.est.2022.106578

  109. Chen Y, Wang N, Hu W, Komarneni S (2019) In situ construction of porous Ni/Co-MOF@Carbon cloth electrode with honeycomb-like structure for high-performance energy storage. J Porous Mater 26:921–929. https://doi.org/10.1007/s10934-019-00735-9

    Article  CAS  Google Scholar 

  110. Salehi S, Ehsani MH, Aghazadeh M, Badiei A, Ganjali MR (2022) Electrodeposition of binderless Ni,Zn-MOF on porous nickel substrate for high-efficiency supercapacitors. J Solid State Chem 316. https://doi.org/10.1016/j.jssc.2022.123549

  111. Huang S, Shi XR, Sun C, Zhang X, Huang M, Liu R, Wang H, Xu S (2022) Template-controlled in-situ growing of NiCo-MOF nanosheets on Ni foam with mixed linkers for high performance asymmetric supercapacitors. Appl Surf Sci 572. https://doi.org/10.1016/j.apsusc.2021.151344

  112. Erçarlkcl E, Daǧcl Klranşan K, Topçu E (2022) Three-dimensional ZnCo-MOF modified graphene sponge: flexible electrode material for symmetric supercapacitor. Energy Fuel 36:1735–1745. https://doi.org/10.1021/acs.energyfuels.1c04183

    Article  CAS  Google Scholar 

  113. Otun KO, Zong S, Hildebrandt D, Liu X (2022) Self-assembled Zn-functionalized Ni-MOF as an efficient electrode for electrochemical energy storage. J Phys Chem Solids 167. https://doi.org/10.1016/j.jpcs.2022.110779

  114. Khadka A, Samuel E, Il Kim Y, Park C, Lee HS, Yoon SS (2023) Hierarchical ZIF-67 of dodecahedral structure on binder-free carbon nanofiber for flexible supercapacitors. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2022.11.029

  115. Liu Y, Li G, Guo Y, Ying Y, Peng X (2017) Flexible and binder-free hierarchical porous carbon film for supercapacitor electrodes derived from MOFs/CNT. ACS Appl Mater Interfaces 9:14043–14050. https://doi.org/10.1021/acsami.7b03368

    Article  CAS  PubMed  Google Scholar 

  116. Wang J, Zhong Q, Xiong Y, Cheng D, Zeng Y, Bu Y (2019) Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors. Appl Surf Sci 483:1158–1165. https://doi.org/10.1016/j.apsusc.2019.03.340

    Article  CAS  Google Scholar 

  117. Zhu Y, Du W, Zhang Q, Yang H, Zong Q, Wang Q, Zhou Z, Zhan J (2020) A metal-organic framework template derived hierarchical Mo-doped LDHs@MOF-Se core-shell array electrode for supercapacitors. Chem Commun 56:13848–13851. https://doi.org/10.1039/d0cc05561a

    Article  CAS  Google Scholar 

  118. Li Q, Guo H, Xue R, Wang M, Xu M, Yang W, Zhang J, Yang W (2020) Self-assembled Mo doped Ni-MOF nanosheets based electrode material for high performance battery-supercapacitor hybrid device. Int J Hydrog Energy 45:20820–20831. https://doi.org/10.1016/j.ijhydene.2020.05.143

    Article  CAS  Google Scholar 

  119. Wu Y, Xu G, Zhang W, Song C, Wang L, Fang X, Xu L, Han S, Cui J, Gan L (2021) Construction of ZIF@electrospun cellulose nanofiber derived N doped metallic cobalt embedded carbon nanofiber composite as binder-free supercapacitance electrode. Carbohydr Polym 267. https://doi.org/10.1016/j.carbpol.2021.118166

  120. Eagleton AM, Ko M, Stolz RM, Vereshchuk N, Meng Z, Mendecki L, Levenson AM, Huang C, MacVeagh KC, Mahdavi-Shakib A, Mahle JJ, Peterson GW, Frederick BG, Mirica KA (2022) Fabrication of multifunctional electronic textiles using oxidative restructuring of copper into a Cu-based metal-organic framework. J Am Chem Soc 144:23297–23312. https://doi.org/10.1021/jacs.2c05510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bai Z, Liu S, Chen P, Cheng G, Wu G, Li H, Liu Y (2020) Nickel nanoparticles embedded in porous carbon nanofibers and its electrochemical properties. Nanotechnology 31. https://doi.org/10.1088/1361-6528/ab8594

  122. Hussain I, Iqbal S, Hussain T, Cheung WL, Khan SA, Zhou J, Ahmad M, Khan SA, Lamiel C, Imran M, AlFantazi A, Zhang K (2022) Zn–Co-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices. Mater Today Phys 23. https://doi.org/10.1016/j.mtphys.2022.100655

  123. Wang Q, Wang Y, Zhang T, Wang Y, Zhang Q, Li T, Han Y (2022) Electrochemical polymerization of polypyrrole on carbon cloth@ZIF67 using alizarin red S as redox dopant for flexible supercapacitors. Electrochim Acta 407. https://doi.org/10.1016/j.electacta.2022.139869

  124. Hou R, Miao M, Wang Q, Yue T, Liu H, Park HS, Qi K, Xia BY (2020) Integrated conductive hybrid architecture of metal–organic framework nanowire array on polypyrrole membrane for all-solid-state flexible supercapacitors. Adv Energy Mater 10. https://doi.org/10.1002/aenm.201901892

  125. Liu Y, Wang Y, Chen Y, Wang C, Guo L (2020) NiCo-MOF nanosheets wrapping polypyrrole nanotubes for high-performance supercapacitors. Appl Surf Sci 507. https://doi.org/10.1016/j.apsusc.2019.145089

  126. Yue L, Wang X, Sun T, Liu H, Li Q, Wu N, Guo H, Yang W (2019) Ni-MOF coating MoS2 structures by hydrothermal intercalation as high-performance electrodes for asymmetric supercapacitors. Chem Eng J 375. https://doi.org/10.1016/j.cej.2019.121959

  127. Bhardwaj SK, Bhardwaj N, Kaur R, Mehta J, Sharma AL, Kim KH, Deep A (2018) An overview of different strategies to introduce conductivity in metal-organic frameworks and miscellaneous applications thereof. J Mater Chem A 6:14992–15009

    Article  CAS  Google Scholar 

  128. Srimuk P, Luanwuthi S, Krittayavathananon A, Sawangphruk M (2015) Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper. Electrochim Acta 157:69–77. https://doi.org/10.1016/j.electacta.2015.01.082

    Article  CAS  Google Scholar 

  129. Rahmanifar MS, Hesari H, Noori A, Masoomi MY, Morsali A, Mousavi MF (2018) A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochim Acta 275:76–86. https://doi.org/10.1016/j.electacta.2018.04.130

    Article  CAS  Google Scholar 

  130. Ganiyat Olatoye A, Li W, Oluwaseyi Fagbohun E, Zeng X, Zheng Y, Cui Y (2023) High-performance asymmetric supercapacitor based on nickel-MOF anchored MXene//NPC/rGO. J Electroanal Chem 928. https://doi.org/10.1016/j.jelechem.2022.117036

  131. Li S, Chai H, Zhang L, Xu Y, Jiao Y, Chen J (2023) Constructing oxygen vacancy-rich MXene @Ce-MOF composites for enhanced energy storage and conversion. J Colloid Interface Sci 642:235–245. https://doi.org/10.1016/j.jcis.2023.03.120

    Article  CAS  PubMed  Google Scholar 

  132. Wang Y, Liu Y, Wang C, Liu H, Zhang J, Lin J, Fan J, Ding T, Ryu JE, Guo Z (2020) Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitors. Engineered. Science 9:50–59. https://doi.org/10.30919/es8d903

    Article  CAS  Google Scholar 

  133. Zhang X, Yang S, Lu W, Lei D, Tian Y, Guo M, Mi P, Qu N, Zhao Y (2021) MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors. J Colloid Interface Sci 592:95–102. https://doi.org/10.1016/j.jcis.2021.02.042

    Article  CAS  PubMed  Google Scholar 

  134. Dey C, Kundu T, Biswal BP, Mallick A, Banerjee R, (2014) Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Cryst. B70:3–10. https://doi.org/10.1107/S2052520613029557

  135. Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF (1979) Yaghi OM (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336:1018–1023. https://doi.org/10.1126/science.1220131

    Article  CAS  Google Scholar 

  136. McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg 2(dobpdc). J Am Chem Soc 134:7056–7065. https://doi.org/10.1021/ja300034j

    Article  CAS  PubMed  Google Scholar 

  137. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851. https://doi.org/10.1021/ja8057953

    Article  CAS  PubMed  Google Scholar 

  138. Katz MJ, Brown ZJ, Colón YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK (2013) A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun 49:9449–9451. https://doi.org/10.1039/c3cc46105j

    Article  CAS  Google Scholar 

  139. Serre C, Millange F, Thouvenot C, Noguès M, Marsolier G, Louër D, Férey G (2002) Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C-C6H4- CO2}·{HO2C-C6H4 -CO2H}x·H2Oy. J Am Chem Soc 124:13519–13526. https://doi.org/10.1021/ja0276974

    Article  CAS  PubMed  Google Scholar 

  140. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J 10:1373–1382. https://doi.org/10.1002/chem.200305413

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was performed under the financial support of the Block Funding Research Program funded by The Research Council of Oman (BFP/RGP/EBR/22/211).

Author information

Authors and Affiliations

Authors

Contributions

Surbhi Anand: Review methodology, data curation, writing—original draft preparation, reviewing, and editing.

SK Safdar Hossain: data curation, reviewing, and editing.

Arup Choudhury: conceptualization, review methodology, investigation, supervision, writing—reviewing and editing.

Md. Wasi Ahmad: conceptualization, investigation, supervision

Corresponding authors

Correspondence to Md. Wasi Ahmad or Arup Choudhury.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S., Ahmad, M.W., Hossain, S.S. et al. A review on metal-organic framework hybrid-based flexible electrodes for solid-state supercapacitors. Ionics 29, 4437–4467 (2023). https://doi.org/10.1007/s11581-023-05177-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05177-7

Keywords

Navigation