Skip to main content

Advertisement

Log in

Electrospun PAN membranes strengthened in situ–grown TiO2 particles for high-performance lithium-ion batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An in situ–grown TiO2 membrane was prepared by an electrospinning method using polyacrylonitrile as the spinning precursor, combined with the TiO2 hydrolysis mechanism. The performance of tetrabutyl titanate and isopropyl titanate as two titanium source precursors hydrolyzed under the inhibition of acrylic acid to produce TiO2 with different contents for lithium-ion batteries was compared. The experimental results showed that when both titanium sources were prepared at 3 wt%, the comprehensive performance of the separator manufactured with tetrabutyl titanate as the titanium source (PAN/TBT-3) and isopropyl titanate as the titanium source (PAN/TPT-3) was finest than that of the Celgard 2400 and the composite membrane with direct TiO2 addition (PAN/TiO2-3). The tensile strength of PAN/TPT-3 and PAN/TBT-3 membranes were 7.82 MPa and 4.03 MPa higher than that of Celgard 2400, and 17.03 MPa and 13.29 MPa higher than that of PAN/TiO2-3 separator, respectively. PAN/TPT-3 and PAN/TBT-3 membranes exhibited a discharge capacity of 107.72 mAh/g and 115.79 mAh/g at 2 C, and both the capacity retention rate was above 99.5% higher than 80.5% for Celgard 2400.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

There is no supporting information in this article.

References

  1. Nunes-Pereira J, Lopes AC, Costa CM, Rodrigues LC, Silva MM, Lanceros-Méndez S (2013) Microporous membranes of NaY zeolite/poly(vinylidene fluoride–trifluoroethylene) for Li-ion battery separators. J Electroanal Chem 689:223–232

    Article  CAS  Google Scholar 

  2. Li Z, Cao T, Zhang Y, Han Y, Xu S, Xu Z (2017) Novel lithium ion battery separator based on hydroxymethyl functionalized poly(ether ether ketone). J Membr Sci 540:422–429

    Article  CAS  Google Scholar 

  3. Wang F, Ke X, Shen K, Zhu L, Yuan C (2021) A critical review on materials and fabrications of thermally stable separators for lithium-ion batteries. Adv Mater Technol 7:2100772

    Article  Google Scholar 

  4. Li H, Feng T, Lian Y, Wu M (2023) Construction of PMIA@ PAN/PVDF-HFP/TiO2 coaxial fibrous separator with enhanced mechanical strength and electrolyte affinity for lithium-ion batteries. Chinese Chem Lett 23

  5. Gong G, Li Z, Wang L, Cui W (2020) Electrospinning TiO2 modified biphenyl polyimide lithium ion battery separator. Chinese J Mater Res 34:169–175

    Google Scholar 

  6. Song K, Zhang P, Ding Y, Peng J (2019) TiO2 modified hen-egg-shell-membrane as separator for Li-ion batteries. Mater Res Express 6:075512

    Article  CAS  Google Scholar 

  7. Jee S-C, Kim M, Shinde SK, Ghodake GS, Sung J-S, Kadam AA (2020) Assembling ZnO and Fe3O4 nanostructures on halloysite nanotubes for anti-bacterial assessments. Appl Surf Sci 509

  8. Qiao X, Na M, Gao P, Sun K (2017) Halloysite nanotubes reinforced ultrahigh molecular weight polyethylene nanocomposite films with different filler concentration and modification. Polym Testing 57:133–140

    Article  CAS  Google Scholar 

  9. Choo CK, Kong XY, Goh TL, Ngoh GC, Horri BA, Salamatinia B (2016) Chitosan/halloysite beads fabricated by ultrasonic-assisted extrusion-dripping and a case study application for copper ion removal. Carbohyd Polym 138:16–26

    Article  CAS  Google Scholar 

  10. Yanilmaz M, Lu Y, Li Y, Zhang X (2015) SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries. J Power Sources 273:1114–1119

    Article  CAS  Google Scholar 

  11. Wu D, Deng L, Sun Y, Teh KS, Shi C, Tan Q, Zhao J, Sun D, Lin L (2017) A high-safety PVDF/Al2O3composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating. RSC Adv 7:24410–24416

    Article  CAS  Google Scholar 

  12. Liu X, Song K, Lu C, Huang Y, Duan X, Li S, Ding Y (2018) Electrospun PU@GO separators for advanced lithium ion batteries. J Membr Sci 555:1–6

    Article  CAS  Google Scholar 

  13. Padmaraj O, Nageswara Rao B, Jena P, Venkateswarlu M, Satyanarayana N (2014) Electrochemical studies of electrospun organic/inorganic hybrid nanocomposite fibrous polymer electrolyte for lithium battery. Polymer 55:1136–1142

    Article  CAS  Google Scholar 

  14. Dong G, Liu B, Sun G, Tian G, Qi S, Wu D (2019) TiO2 nanoshell@polyimide nanofiber membrane prepared via a surface-alkaline-etching and in-situ complexation-hydrolysis strategy for advanced and safe LIB separator. J Membr Sci 577:249–257

    Article  CAS  Google Scholar 

  15. Bai Y, Yu H, Li Z, Amal R, Lu GQ, Wang L (2012) In situ growth of a ZnO nanowire network within a TiO(2) nanoparticle film for enhanced dye-sensitized solar cell performance. Adv Mater 24:5850–5856

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Zhang D, Shao Z, Liu S (2019) Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery. Carbohyd Polym 214:328–336

    Article  CAS  Google Scholar 

  17. Patil Y, Sambandam S, Ramani V, Mauritz K (2013) Perfluorinated polymer electrolytes hybridized with in situ grown titania quasi-networks. ACS Appl Mater Interfaces 5:42–48

    Article  CAS  PubMed  Google Scholar 

  18. Huang Q, Huang Y, Gao S, Zhan M, Xiao C (2018) Novel ultrafine fibrous poly(tetrafluoroethylene) hollow fiber membrane fabricated by electrospinning. Polymers (Basel) 10(5):464

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tang W, Liu Q, Luo N, Chen F, Fu Q (2022) High safety and electrochemical performance electrospun para-aramid nanofiber composite separator for lithium-ion battery. Compos Sci Technol 225:109479

    Article  CAS  Google Scholar 

  20. Xie JZ, Hein S, Wang K, Liao K, Goh KL (2008) Influence of hydroxyapatite crystallization temperature and concentration on stress transfer in wet-spun nanohydroxyapatite-chitosan composite fibres. Biomed Mater 3:025014

    Article  CAS  PubMed  Google Scholar 

  21. Rylski AK, Cater HL, Mason KS, Allen MJ, Arrowood AJ, Freeman BD, Sanoja GE, Page ZA (2022) Polymeric multimaterials by photochemical patterning of crystallinity. Science 378:211–215

    Article  CAS  PubMed  Google Scholar 

  22. Feng X, Ren D, He X, Ouyang M (2020) Mitigating thermal runaway of lithium-ion batteries. Joule 4:743–770

    Article  CAS  Google Scholar 

  23. Zhu Y, Xiao S, Shi Y, Yang Y, Wu Y (2013) A trilayer poly (vinylidene fluoride)/polyborate/poly (vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. J Mater Chem A 1:7790–7797

    Article  CAS  Google Scholar 

  24. Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48:4907–4920

    Article  CAS  Google Scholar 

  25. Tang L, Wu Y, He D, Lei Z, Liu N, He Y, De Guzman MR, Chen J (2023) Electrospun PAN membranes toughened and strengthened by TPU/SHNT for high-performance lithium-ion batteries. J Electroanal Chem 931

  26. Pasbakhsh P, Churchman GJ, Keeling JL (2013) Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl Clay Sci 74:47–57

    Article  CAS  Google Scholar 

  27. Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703–718

    Article  CAS  Google Scholar 

  28. Liao Y, Sun C, Hu S, Li W (2013) Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery. Electrochim Acta 89:461–468

    Article  CAS  Google Scholar 

  29. Subianto S, Pica M, Casciola M, Cojocaru P, Merlo L, Hards G, Jones DJ (2013) Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells. J Power Sources 233:216–230

    Article  CAS  Google Scholar 

  30. Zhao Y, Wang S, Guo Q, Shen M, Shi X (2013) Hemocompatibility of electrospun halloysite nanotube- and carbon nanotube-doped composite poly(lactic-co-glycolic acid) nanofibers. J Appl Polym Sci 127:4825–4832

    Article  CAS  Google Scholar 

  31. Subramania A, Kalyana Sundaram NT, Sathiya Priya AR, Vijaya Kumar G (2007) Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery. J Membr Sci 294:8–15

    Article  CAS  Google Scholar 

  32. Liang F, Sun Y, Yuan Y, Huang J, Hou M, Lu J (2021) Designing inorganic electrolytes for solid-state Li-ion batteries: a perspective of LGPS and garnet. Mater Today 50:418–441

    Article  CAS  Google Scholar 

Download references

Funding

This work received funding from the Scientific and Project of Sichuan Province (E10106093) and the Project of Zigong High-Tech Zone Science and Technology Service Industry Cluster Construction (2021KJFWY010).

Author information

Authors and Affiliations

Authors

Contributions

LT and YW wrote the main manuscript text; ZL prepared Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12; and YH and JC offered funding acquisition. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Jian Chen.

Ethics declarations

Ethical approval

This article does not involve human or biological research and has no moral or ethical issues.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Wu, Y., Lei, Z. et al. Electrospun PAN membranes strengthened in situ–grown TiO2 particles for high-performance lithium-ion batteries. Ionics 29, 4669–4679 (2023). https://doi.org/10.1007/s11581-023-05111-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05111-x

Keywords

Navigation