Skip to main content
Log in

An agglomeration-free and high ion conductive ceramic-in-polymer composite solid electrolyte modified by fluorocarbon surfactant for enhancing performance of all-solid-state lithium batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Solid-state electrolyte is a crucial component of all-solid-state batteries. Composite solid electrolytes are gaining attention for their ability to combine the high ionic conductivity and mechanical strength of inorganic solid-state electrolytes with the flexibility and interfacial compatibility of polymer solid electrolytes. However, agglomeration in composite solid electrolytes caused by inorganic fillers with high surface energy seriously affects the performance of composite solid electrolytes. To address this issue, nonionic fluorocarbon surfactant FC-4430 was added to the Li6.4La3Zr1.4Ta0.6O12 (LLZTO)/polyethylene oxide (PEO) composite solid electrolyte to enhance the wettability between LLZTO and the PEO matrix, resulting in the uniform dispersion of higher LLZTO content in PEO and improved ionic conductivity of the composite solid electrolyte. In addition, a smoother and flatter surface of the composite solid electrolyte is obtained, which improves the electrolyte/electrode interfacial contact. With the addition of 0.3 wt% FC-4430, the highest ionic conductivity of the composite solid electrolyte at 60 °C reaches 6.46 × 10−4 S/cm. The lithium-ion mobility of the composite solid-state electrolyte at room temperature is 0.69, and a voltage stability window is up to 5.0 V. The assembled LFP all-solid-state batteries show the initial discharge specific capacities of 158.4 mAh/g and 139.5 mAh/g at rate of 0.5 C and 1 C, respectively, as well as capacity retention of 96.4% and 90.9% after 300 cycles at 60 °C. Composite solid electrolytes also show improved mechanical properties and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  2. Goodenough JB (2012) Rechargeable batteries: challenges old and new. J Solid State Electrochem 16:2019–2029. https://doi.org/10.1007/s10008-012-1751-2

    Article  CAS  Google Scholar 

  3. Zhang XH, Li Z, Luo LA, Fan YL, Du ZY (2022) A review on thermal management of lithium-ion batteries for electric vehicles. Energy 238:12. https://doi.org/10.1016/j.energy.2021.121652

    Article  CAS  Google Scholar 

  4. Nitta N, Wu FX, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264. https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  5. Fang RP, Chen K, Yin LC, Sun ZH, Li F, Cheng HM (2019) The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv Mater 31:22. https://doi.org/10.1002/adma.201800863

    Article  CAS  Google Scholar 

  6. Zhang XQ, Zhao CZ, Huang JQ, Zhang Q (2018) Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering 4:831–847. https://doi.org/10.1016/j.eng.2018.10.008

    Article  CAS  Google Scholar 

  7. Gao ZH, Sun HB, Fu L, Ye FL, Zhang Y, Luo W, Huang YH (2018) Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater 30:27. https://doi.org/10.1002/adma.201705702

    Article  CAS  Google Scholar 

  8. Zhang R, Li NW, Cheng XB, Yin YX, Zhang Q, Guo YG (2017) Advanced micro/nanostructures for lithium metal anodes. Adv Sci 4:13. https://doi.org/10.1002/advs.201600445

    Article  CAS  Google Scholar 

  9. Li Z, Huang J, Liaw BY, Metzler V, Zhang JB (2014) A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J Power Sources 254:168–182. https://doi.org/10.1016/j.jpowsour.2013.12.099

    Article  CAS  Google Scholar 

  10. Francis CFJ, Kyratzis IL, Best AS (2020) Lithium-ion battery separators for ionic-liquid electrolytes: a review. Adv Mater 32:22. https://doi.org/10.1002/adma.201904205

    Article  CAS  Google Scholar 

  11. Zhang HL, Zhao HB, Khan MA, Zou WW, Xu JQ, Zhang L, Zhang JJ (2018) Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J Mater Chem A 6:20564–20620. https://doi.org/10.1039/c8ta05336g

    Article  CAS  Google Scholar 

  12. Wan J, Xie J, Mackanic DG, Burke W, Bao Z, Cui Y (2018) Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Materials Today Nano 4:1–16. https://doi.org/10.1016/j.mtnano.2018.12.003

    Article  CAS  Google Scholar 

  13. Li C, Wang ZY, He ZJ, Li YJ, Mao J, Dai KH, Yan C, Zheng JC (2021) An advance review of solid-state battery: challenges, progress and prospects. Sustain Mater Technol 29:14. https://doi.org/10.1016/j.susmat.2021.e00297

    Article  CAS  Google Scholar 

  14. Xiao YH, Wang Y, Bo SH, Kim JC, Miara LJ, Ceder G (2020) Understanding interface stability in solid-state batteries. Nat Rev Mater 5:105–126. https://doi.org/10.1038/s41578-019-0157-5

    Article  CAS  Google Scholar 

  15. Yu XW, Manthiram A (2021) A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater 34:282–300. https://doi.org/10.1016/j.ensm.2020.10.006

    Article  Google Scholar 

  16. Wang CW, Fu K, Kammampata SP, McOwen DW, Samson AJ, Zhang L, Hitz GT, Nolan AM, Wachsman ED, Mo YF, Thangadurai V, Hu LB (2020) Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem Rev 120:4257–4300. https://doi.org/10.1021/acs.chemrev.9b00427

    Article  CAS  PubMed  Google Scholar 

  17. Han G, Kinzer B, Garcia-Mendez R, Choe H, Wolfenstine J, Sakamoto J (2020) Correlating the effect of dopant type (Al, Ga, Ta) on the mechanical and electrical properties of hot-pressed Li-garnet electrolyte. J Eur Ceram Soc 40:1999–2006. https://doi.org/10.1016/j.jeurceramsoc.2019.12.054

    Article  CAS  Google Scholar 

  18. Xu LQ, Li JY, Shuai HL, Luo Z, Wang BW, Fang SS, Zou GQ, Hou HS, Peng HJ, Ji XB (2022) Recent advances of composite electrolytes for solid-state Li batteries. J Energy Chem 67:524–548. https://doi.org/10.1016/j.jechem.2021.10.0382095-4956

    Article  CAS  Google Scholar 

  19. Xue ZG, He D, Xie XL (2015) Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3:19218–19253. https://doi.org/10.1039/c5ta03471j

    Article  CAS  Google Scholar 

  20. Zhou Q, Ma J, Dong SM, Li XF, Cui GL (2019) Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater 31:21. https://doi.org/10.1002/adma.201902029

    Article  CAS  Google Scholar 

  21. Dirican M, Yan CY, Zhu P, Zhang XW (2019) Composite solid electrolytes for all-solid-state lithium batteries. Mater Sci Eng R-Rep 136:27–46. https://doi.org/10.1016/j.mser.2018.10.004

    Article  Google Scholar 

  22. Wang S, Sun Q, Peng W, Ma Y, Zhou Y, Song D, Zhang H, Shi X, Li C, Zhang L (2021) Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte. J Energy Chem 58:85–93. https://doi.org/10.1016/j.jechem.2020.09.033

    Article  CAS  Google Scholar 

  23. Ma X, Liu M, Wu QP, Guan X, Wang F, Liu HM, Xu J Composite electrolytes prepared by improving the interfacial compatibility of organic-inorganic electrolytes for dendrite-free, long-life all-solid lithium metal batteries. ACS Appl Mater Interfaces 14:53828–53839. https://doi.org/10.1021/acsami.2c16174

  24. Zegeye TA, Su WN, Fenta FW, Zeleke TS, Jiang SK, Hwang BJ (2020) Ultrathin Li6.75La3Zr1.75Ta0.25O12-based composite solid electrolytes laminated on anode and cathode surfaces for anode-free lithium metal batteries. ACS Appl Energ Mater 3:11713–11723. https://doi.org/10.1021/acsaem.0c01714

    Article  CAS  Google Scholar 

  25. Tong RA, Chen LH, Shao G, Wang HL, Wang CA (2021) An integrated solvent-free modification and composite process of Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene oxide) solid electrolytes: Enhanced compatibility and cycle performance. J Power Sources 492:9. https://doi.org/10.1016/j.jpowsour.2021.229672

    Article  CAS  Google Scholar 

  26. Zuo XX, Wu JH, Ma XD, Deng X, Cai JX, Chen QY, Liu JS, Nan JM (2018) A poly(vinylidene fluoride)/ethyl cellulose and amino-functionalized nano-SiO2 composite coated separator for 5 V high-voltage lithium-ion batteries with enhanced performance. J Power Sources 407:44–52. https://doi.org/10.1016/j.jpowsour.2018.10.056

    Article  CAS  Google Scholar 

  27. Duan H, Yin YX, Zeng XX, Li JY, Shi JL, Shi Y, Wen R, Guo YG, Wan LJ (2018) In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater 10:85–91. https://doi.org/10.1016/j.ensm.2017.06.017

    Article  Google Scholar 

  28. Chen L, Li YT, Li SP, Fan LZ, Nan CW, Goodenough JB (2018) PEO/garnet composite electrolytes for solid-state lithium batteries: from "ceramic-in-polymer" to "polymer-in-ceramic.". Nano Energy 46:176–184. https://doi.org/10.1016/j.nanoen.2017.12.037

    Article  CAS  Google Scholar 

  29. Kaplan WD, Chatain D, Wynblatt P, Carter WC (2013) A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting. J Mater Sci 48:5681–5717. https://doi.org/10.1007/s10853-013-7462-y

    Article  CAS  Google Scholar 

  30. Cao L, Wu H, Yang PF, He XY, Li JZ, Li Y, Xu MZ, Qiu M, Jiang ZY (2018) Graphene oxide-based solid electrolytes with 3D prepercolating pathways for efficient proton transport. Adv Funct Mater 28:10. https://doi.org/10.1002/adfm.201804944

    Article  CAS  Google Scholar 

  31. Bae J, Li YT, Zhang J, Zhou XY, Zhao F, Shi Y, Goodenough JB, Yu GH (2018) A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew Chem-Int Edit 57:2096–2100. https://doi.org/10.1002/anie.201710841

    Article  CAS  Google Scholar 

  32. Bae J, Li YT, Zhao F, Zhou XY, Ding Y, Yu GH (2018) Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater 15:46–52. https://doi.org/10.1016/j.ensm.2018.03.016

    Article  Google Scholar 

  33. Huang Z, Pang W, Liang P, Jin Z, Grundish N, Li Y, Wang C-A (2019) A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J Mater Chem A 7:16425–16436. https://doi.org/10.1039/c9ta03395e

    Article  CAS  Google Scholar 

  34. Zhang Z, Zhang S, Geng S, Zhou S, Hu Z, Luo J (2022) Agglomeration-free composite solid electrolyte and enhanced cathode-electrolyte interphase kinetics for all-solid-state lithium metal batteries. Energy Storage Mater 51:19–28. https://doi.org/10.1016/j.ensm.2022.06.025

    Article  Google Scholar 

  35. Quinete N, Orata F, Maes A, Gehron M, Bauer KH, Moreira I, Wilken RD (2010) Degradation studies of new substitutes for perfluorinated surfactants. Arch Environ Contam Toxicol 59:20–30. https://doi.org/10.1007/s00244-009-9451-3

    Article  CAS  PubMed  Google Scholar 

  36. Yang Q, Hu J, Meng J, Li C (2021) C–F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energ Environ Sci 14:3621–3631. https://doi.org/10.1039/d0ee03952g

    Article  CAS  Google Scholar 

  37. Tonanon N, Tanthapanichakoon W, Yamamoto T, Nishihara H, Mukai SR, Tamon H (2003) Influence of surfactants on porous properties of carbon cryogels prepared by sol–gel polycondensation of resorcinol and formaldehyde. Carbon 41:2981–2990. https://doi.org/10.1016/s0008-6223(03)00422-6

    Article  CAS  Google Scholar 

  38. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38:1232–1261. https://doi.org/10.1016/j.progpolymsci.2013.02.003

    Article  CAS  Google Scholar 

  39. Li RG, Guo ST, Yu L, Wang LB, Wu DB, Li YQ, Hu XL (2019) Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv Mater Interfaces 6:8. https://doi.org/10.1002/admi.201900200

    Article  CAS  Google Scholar 

  40. Lu C, Chiang SW, Du H, Li J, Gan L, Zhang X, Chu X, Yao Y, Li B, Kang F (2017) Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer 115:52–59. https://doi.org/10.1016/j.polymer.2017.02.024

    Article  CAS  Google Scholar 

  41. Choi J-H, Lee C-H, Yu J-H, Doh C-H, Lee S-M (2015) Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J Power Sources 274:458–463. https://doi.org/10.1016/j.jpowsour.2014.10.078

    Article  CAS  Google Scholar 

  42. Zha WP, Chen F, Yang DJ, Shen Q, Zhang LM (2018) High-performance Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries. J Power Sources 397:87–94. https://doi.org/10.1016/j.jpowsour.2018.07.005

    Article  CAS  Google Scholar 

  43. Khan K, Fu B, Xin H, Beshiwork BA, Hanif MB, Wu J, Fang Z, Yang J, Li T, Chen C, Motola M, Xu Z, Wu M (2023) Composite polymer electrolyte incorporating WO3 nanofillers with enhanced performance for dendrite-free solid-state lithium battery. Ceram Int 49:4473–4481. https://doi.org/10.1016/j.ceramint.2022.09.333

    Article  CAS  Google Scholar 

  44. Yi SH, Xu TH, Li L, Gao MM, Du K, Zhao HL, Bai Y (2020) Fast ion conductor modified double-polymer (PVDF and PEO) matrix electrolyte for solid lithium-ion batteries. Solid State Ion 355:10. https://doi.org/10.1016/j.ssi.2020.115419

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51874358 and 51772333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hu, G., Peng, Z. et al. An agglomeration-free and high ion conductive ceramic-in-polymer composite solid electrolyte modified by fluorocarbon surfactant for enhancing performance of all-solid-state lithium batteries. Ionics 29, 3129–3142 (2023). https://doi.org/10.1007/s11581-023-05105-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05105-9

Keywords

Navigation