Skip to main content
Log in

Synthesis of poly(vinyl acetate)-based gel polymer electrolyte for application in electric double layer capacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, poly(vinyl acetate) (PVAc)-based gel polymer electrolytes (GPEs) from precursor solutions containing different volume ratios of vinyl acetate monomer and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIMTFSI) at a fixed concentration of 0.1 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) were synthesized via ex-situ polymerization. The GPE with 35% (v/v) of BMIMTFSI exhibits the highest ionic conductivity of (1.90 ± 0.32) × 10–4 S cm−1 at ambient temperature, with a glass transition temperature (Tg) of -28.01 °C. Fourier transform infrared (FTIR) study confirms the complexation and interaction between the BMIMTFSI, LiTFSI, and PVAc. X-ray diffraction (XRD) analysis shows a reduction in degree of crystallinity of the polymer matrix upon addition of LiTFSI and BMIMTFSI. Addition of ionic liquid enhances the potential window of the GPEs as shown in linear sweep voltammetry (LSV) study. The specific capacitance of EDLC increases significantly upon addition of BMIMTFSI, along with relatively stable energy and power densities as proven in Galvanostatic Charge–Discharge (GCD) study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data available within the article or its supplementary materials.

References

  1. Zhao CZ, Zhao BC, Yan C, Zhang XQ, Huang JQ, Mo Y, Xu X, Li H, Zhang Q (2020) Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: a review. Energy Storage Mater 24:75–84. https://doi.org/10.1016/j.ensm.2019.07.026

    Article  Google Scholar 

  2. Koohi-Fayegh S, Rosen MA (2020) A review of energy storage types, applications and recent developments. J Energy Storage 27:101047. https://doi.org/10.1016/j.est.2019.101047

    Article  Google Scholar 

  3. Sudhakar YN, Selvakumar M, Bhat DK (2018) Methods of preparation of biopolymer electrolytes. Biopolym Electrolytes 35–52. https://doi.org/10.1016/b978-0-12-813447-4.00002-9

  4. Ye L, Feng Z (2010) Polymer electrolytes as solid solvents and their applications. Polym Electrolytes Fundam Appl 550–582. https://doi.org/10.1533/9781845699772.2.550

  5. Gao T, Wang B, Wang L, Liu G, Wang F, Luo H, Wang D (2018) LiAlCl4·3SO2 as a high conductive, non-flammable and inorganic non-aqueous liquid electrolyte for lithium ion batteries. Electrochim Acta 286:77–85. https://doi.org/10.1016/j.electacta.2018.08.033

    Article  CAS  Google Scholar 

  6. Yao P, Yu H, Ding Z, Liu Y, Lu J, Lavorgna M, Wu J, Liu X (2019) Review on polymer-based composite electrolytes for lithium batteries. Front Chem 7:1–17. https://doi.org/10.3389/fchem.2019.00522

    Article  CAS  Google Scholar 

  7. Liu J, Ahmed S, Khanam Z, Wang T, Song S (2020) Ionic liquid-incorporated zn-ion conducting polymer electrolyte membranes. Polymers (Basel) 12:1–12. https://doi.org/10.3390/polym12081755

    Article  CAS  Google Scholar 

  8. Hu Z, Zhang X, Liu J, Zhu Y (2020) Ion liquid modified GO filler to improve the performance of polymer electrolytes for Li metal batteries. Front Chem 8:1–8. https://doi.org/10.3389/fchem.2020.00232

    Article  CAS  Google Scholar 

  9. Rajendran S, Mathew CM, Marimuthu T, Kesavan K (2013) Li ion conducting gel polymer electrolytes based on poly(vinyl acetate). AIP Conf Proc 1536:775–776. https://doi.org/10.1063/1.4810457

    Article  CAS  Google Scholar 

  10. Han X, Zhang H, Liu T, Du X, Xu G, Han P, Zhou X, Cui G (2020) An interfacially self-reinforced polymer electrolyte enables long-cycle 5.35 v dual-ion batteries. J Mater Chem A 8:1451–1456. https://doi.org/10.1039/c9ta12359h

    Article  CAS  Google Scholar 

  11. Ulaganathan M, Rajendran S (2011) Novel Li-ion conduction on poly(vinyl acetate)-based hybrid polymer electrolytes with double plasticizers. J Appl Electrochem 41:83–88. https://doi.org/10.1007/s10800-010-0211-x

    Article  CAS  Google Scholar 

  12. Xu G, Zhao M, Xie B, Wang X, Jiang M, Guan P, Han P, Cui G (2021) A rigid-flexible coupling gel polymer electrolyte towards high safety flexible Li-Ion battery. J Power Source 499:229944. https://doi.org/10.1016/j.jpowsour.2021.229944

    Article  CAS  Google Scholar 

  13. Azmar A, Subban RHY, Winie T (2019) Improved long-term stability of dye-sensitized solar cell employing PMA/PVAc based gel polymer electrolyte. Opt Mater (Amst) 96:109349. https://doi.org/10.1016/j.optmat.2019.109349

    Article  CAS  Google Scholar 

  14. urRehman S, Noman M, Khan AD, Saboor A, Ahmad MS, Khan HU (2020) Synthesis of polyvinyl acetate /graphene nanocomposite and its application as an electrolyte in dye sensitized solar cells. Optik (Stuttg) 202. https://doi.org/10.1016/j.ijleo.2019.163591

  15. Hamilton JD, Reinert KH, Hagan JV, Lord WV (1995) Polymers as solid waste in municipal landfills. J Air Waste Manag Assoc 45:247–251. https://doi.org/10.1080/10473289.1995.10467364

    Article  CAS  PubMed  Google Scholar 

  16. Aziz SB, Nofal MM, Abdulwahid RT, Kadir MFZ, Hadi JM, Hessien MM, Kareem WO, Dannoun EMA, Saeed SR (2021) Impedance FTIR and transport properties of plasticized proton conducting biopolymer electrolyte based on chitosan for electrochemical device application. Results Phys 29:104770. https://doi.org/10.1016/j.rinp.2021.104770

    Article  Google Scholar 

  17. Aziz SB, Abdulwahid RT, Kadir MFZ, Ghareeb HO, Ahamad T, Alshehri SM (2022) Design of non-faradaic EDLC from plasticized MC based polymer electrolyte with an energy density close to lead-acid batteries. J Ind Eng Chem 105:414–426. https://doi.org/10.1016/j.jiec.2021.09.042

    Article  CAS  Google Scholar 

  18. Bardak T, Tankut AN, Tankut N, Sozen E, Aydemir D (2016) The effect of nano-TiO2 and SiO2 on bonding strength and structural properties of poly (vinyl acetate) composites. Meas J Int Meas Confed 93:80–85. https://doi.org/10.1016/j.measurement.2016.07.004

    Article  Google Scholar 

  19. Metwalli E, Kaeppel MV, Schaper SJ, Kriele A, Gilles R, Raftopoulos KN, Müller-Buschbaum P (2018) Conductivity and Morphology Correlations of Ionic-Liquid/Lithium-Salt/Block Copolymer Nanostructured Hybrid Electrolytes. ACS Appl Energy Mater 1:666–675. https://doi.org/10.1021/acsaem.7b00173

    Article  CAS  Google Scholar 

  20. Whba RAG, TianKhoon L, Su’ait MS, Rahman MYA, Ahmad A (2020) Influence of binary lithium salts on 49% poly(methyl methacrylate) grafted natural rubber based solid polymer electrolytes. Arab J Chem 13:3351–3361. https://doi.org/10.1016/j.arabjc.2018.11.009

    Article  CAS  Google Scholar 

  21. Kufian MZ, Ramesh S, Arof AK (2021) PMMA-LiTFSI based gel polymer electrolyte for lithium-oxygen cell application. Opt Mater (Amst) 120:111418. https://doi.org/10.1016/j.optmat.2021.111418

    Article  CAS  Google Scholar 

  22. Abdulwahid RT, Aziz SB, Kadir MFZ (2022) Insights into ion transport in biodegradable solid polymer blend electrolyte based on FTIR analysis and circuit design. J Phys Chem Solids 167:110774. https://doi.org/10.1016/j.jpcs.2022.110774

    Article  CAS  Google Scholar 

  23. Nabilah MRN, Alwi MA, Su’ait MS, Imperiyka M, Hanifah SA, Ahmad A, Hassan NH, Rahman MYA (2016) Effect of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide on the properties of poly(glycidyl methacrylate) based solid polymer electrolytes. Russ J Electrochem 52:362–373. https://doi.org/10.1134/S1023193516040091

    Article  CAS  Google Scholar 

  24. Asnawi ASFM, Hamsan MH, Aziz SB, Kadir MFZ, Matmin J, Yusof YM (2021) Impregnation of [Emim]Br ionic liquid as plasticizer in biopolymer electrolytes for EDLC application. Electrochim Acta 375:137923. https://doi.org/10.1016/j.electacta.2021.137923

    Article  CAS  Google Scholar 

  25. Dome K, Podgorbunskikh E, Bychkov A, Lomovsky O (2020) Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers (Basel) 12:1–12. https://doi.org/10.3390/polym12030641

    Article  CAS  Google Scholar 

  26. Latif FA, Zailani NAM, Al Shukaili ZSM, Zamri SFM, Kasim NAM, Rani MSA, Norrrahim MNF (2022) Review of poly (methyl methacrylate) based polymer electrolytes in solid-state supercapacitors. Int J Electrochem Sci 17. https://doi.org/10.20964/2022.01.44

  27. Tan HW, Ramesh S, Liew CW (2019) Electrical, thermal, and structural studies on highly conducting additive-free biopolymer electrolytes for electric double-layer capacitor application. Ionics (Kiel) 25:4861–4874. https://doi.org/10.1007/s11581-019-03017-1

    Article  CAS  Google Scholar 

  28. Wong JIC, Ramesh S, Jun HK, Liew CW (2021) Development of poly(vinyl alcohol) (PVA)-based sodium ion conductors for electric double-layer capacitors application. Mater Sci Eng B Solid-State Mater Adv Technol 263:114804. https://doi.org/10.1016/j.mseb.2020.114804

    Article  CAS  Google Scholar 

  29. Abdullah OG, Ahmed HT, Tahir DA, Jamal GM, Mohamad AH (2021) Influence of PEG plasticizer content on the proton-conducting PEO:MC-NH4I blend polymer electrolytes based films. Results Phys 23:104073. https://doi.org/10.1016/j.rinp.2021.104073

    Article  Google Scholar 

  30. Radzir NNM, Hanifah SA, Ahmad A, Hassan NH (2015) An investigation of gel polymer electrolytes plasticized with imidazolium ionic liquid. Asian J Chem 27:3411–3414. https://doi.org/10.14233/ajchem.2015.18868

    Article  CAS  Google Scholar 

  31. Stacy EW, Gainaru CP, Gobet M, Wojnarowska Z, Bocharova V, Greenbaum SG, Sokolov AP (2018) Fundamental limitations of ionic conductivity in polymerized ionic liquids. Macromolecules 51:8637–8645. https://doi.org/10.1021/acs.macromol.8b01221

    Article  CAS  Google Scholar 

  32. Singh VK, Shalu L, Balo H, Gupta SK, Singh RK (2017) Singh, Solid polymer electrolytes based on Li+/ionic liquid for lithium secondary batteries. J Solid State Electrochem 21:1713–1723. https://doi.org/10.1007/s10008-017-3529-z

    Article  CAS  Google Scholar 

  33. Liu X, Zhan Y, Zhao C, Su Y, Ge Z, Luo Y (2020) A novel polymer electrolyte matrix incorporating ionic liquid intowaterborne polyurethane for lithium-ion battery. Polymers (Basel) 12:1–11. https://doi.org/10.3390/polym12071513

    Article  CAS  Google Scholar 

  34. Sharma T, Gultekin B, Dhapola PS, Sahoo NG, Kumar S, Agarwal D, Jun HK, Singh D, Nath G, Singh PK, Singh A (2022) Ionic liquid doped Poly (methyl methacrylate) for energy applications. J Mol Liq 352. https://doi.org/10.1016/j.molliq.2022.118494

  35. Lim H, Hoag SW (2013) Plasticizer effects on physical-mechanical properties of solvent cast Soluplus® films. AAPS PharmSciTech 14:903–910. https://doi.org/10.1208/s12249-013-9971-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shalu, Singh VK, Singh RK (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C 3:7305–7318. https://doi.org/10.1039/c5tc00940e

    Article  CAS  Google Scholar 

  37. Jothi MA, Vanitha D, Bahadur SA, Nallamuthu N (2021) Investigations of biodegradable polymer blend electrolytes based on cornstarch: PVP: NH4Cl and its potential application in solid-state batteries. J Mater Sci Mater Electron 32:5427–5441. https://doi.org/10.1007/s10854-021-05266-1

    Article  CAS  Google Scholar 

  38. Abdelghany AM, Meikhail MS, Asker N (2019) Synthesis and structural-biological correlation of PVC\PVAc polymer blends. J Mater Res Technol 8:3908–3916. https://doi.org/10.1016/j.jmrt.2019.06.053

    Article  CAS  Google Scholar 

  39. Banitaba SN, Semnani D, Fakhrali A, Ebadi SV, Heydari-Soureshjani E, Rezaei B, Ensafi AA (2020) Electrospun PEO nanofibrous membrane enable by LiCl, LiClO4, and LiTFSI salts: a versatile solvent-free electrolyte for lithium-ion battery application. Ionics (Kiel) 26:3249–3260. https://doi.org/10.1007/s11581-019-03414-6

    Article  CAS  Google Scholar 

  40. Acik G, Cansoy CE, Kamaci M (2019) Effect of flow rate on wetting and optical properties of electrospun poly(vinyl acetate) micro-fibers. Colloid Polym Sci 297:77–83. https://doi.org/10.1007/s00396-018-4443-3

    Article  CAS  Google Scholar 

  41. Kam W, Liew C-W, Lim JY, Ramesh S (2014) Electrical, structural, and thermal studies of antimony trioxide-doped poly(acrylic acid)-based composite polymer electrolytes. Ionics (Kiel) 20:665–674. https://doi.org/10.1007/s11581-013-1012-0

    Article  CAS  Google Scholar 

  42. Kim K, Kuhn L, Alabugin IV, Hallinan DT (2020) Lithium salt dissociation in dibloc copolymer electrolyte using fourier transform infrared spectroscopy. Front Chem 8. https://doi.org/10.3389/fenrg.2020.569442

  43. Farid MM, Goudini L, Piri F, Zamani A, Saadati F (2016) Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles. Food Chem 194:61–67. https://doi.org/10.1016/j.foodchem.2015.07.128

    Article  CAS  PubMed  Google Scholar 

  44. Ahmed MA, Khafagy RM, Bishay ST, Saleh NM (2013) Effective dye removal and water purification using the electric and magnetic Zn0.5Co0.5Al0.5Fe 1.46La0.04O4/polymer core-shell nanocomposites. J Alloys Compd 578:121–131. https://doi.org/10.1016/j.jallcom.2013.04.182

    Article  CAS  Google Scholar 

  45. Rajendran S, Bama VS, Prabhu MR (2010) Preparation and characterization of PVAc-PMMA-based solid polymer blend electrolytes. Ionics (Kiel) 16:283–287. https://doi.org/10.1007/s11581-009-0395-4

    Article  CAS  Google Scholar 

  46. Aziz SB, Abdullah OG, Rasheed MA, Ahmed HM (2017) Effect of high salt concentration (HSC) on structural, morphological, and electrical characteristics of chitosan based solid polymer electrolytes. Polymers (Basel) 9. https://doi.org/10.3390/polym9060187

  47. Hsu WD, Yang PW, Chen HY, Wu PH, Wu PC, Hu CW, Saravanan L, Liao YF, Su YT, Bhalothia D, Chen TY, Chang CC (2021) Preferential lattice expansion of polypropylene in a trilayer polypropylene/polyethylene/polypropylene microporous separator in Li-ion batteries. Sci Rep 11:1–15. https://doi.org/10.1038/s41598-021-81644-3

    Article  CAS  Google Scholar 

  48. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Boopathi G (2018) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non Cryst Solids 481:424–434. https://doi.org/10.1016/j.jnoncrysol.2017.11.027

    Article  CAS  Google Scholar 

  49. Sun CC, You AH, Teo LL (2019) Characterizations of PMMA-based polymer electrolyte membranes with Al2O3. J Polym Eng 39:612–619. https://doi.org/10.1515/polyeng-2019-0088

    Article  CAS  Google Scholar 

  50. Aziz SB, Marf AS, Dannoun EMA, Brza MA, Abdullah RM (2020) The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes. Polymers 12:1–17. https://doi.org/10.3390/polym12102184

    Article  CAS  Google Scholar 

  51. Mohamed AS, Shukur MF, Kadir MFZ, Yusof YM (2020) Ion conduction in chitosan-starch blend based polymer electrolyte with ammonium thiocyanate as charge provider. J Polym Res 27. https://doi.org/10.1007/s10965-020-02084-7

  52. Pandey GP, Hashmi SA (2013) Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. J Mater Chem A 1:3372–3378. https://doi.org/10.1039/c2ta01347a

    Article  CAS  Google Scholar 

  53. Lu W, Henry K, Turchi C, Pellegrino J (2008) Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc 155:A361. https://doi.org/10.1149/1.2869202

    Article  CAS  Google Scholar 

  54. Aziz SB, Nofal MM, Abdulwahid RT, Ghareeb HO, Dannoun EMA, Abdullah RM, Hamsan MH, Kadir MFZ (2021) Plasticized sodium-ion conducting pva based polymer electrolyte for electrochemical energy storage—eec modeling, transport properties, and charge-discharge characteristics. Polymers 13:1–19. https://doi.org/10.3390/polym13050803

    Article  CAS  Google Scholar 

  55. Hamsan MH, Aziz SB, Kadir MFZ, Brza MA, Karim WO (2020) The study of EDLC device fabricated from plasticized magnesium ion conducting chitosan based polymer electrolyte. Polym Test 90:106714. https://doi.org/10.1016/j.polymertesting.2020.106714

    Article  CAS  Google Scholar 

  56. Tripathi M, Bobade SM, Kumar A (2021) Nanocomposite polymer gel with dispersed alumina as an efficient electrolyte for application in supercapacitors. J Phys Chem Solids 152:109944. https://doi.org/10.1016/j.jpcs.2021.109944

    Article  CAS  Google Scholar 

  57. Aziz SB, Brevik I, Brza MA, Asnawi ASFM, Dannoun EMA, Yusof YM, Abdulwahid RT, Hamsan MH, Nofal MM, Kadir MFZ (2020) The study of structural, impedance and energy storage behavior of plasticized pva: Mc based proton conducting polymer blend electrolytes. Materials 13:1–20. https://doi.org/10.3390/ma13215030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Grant Scheme (FRGS/1/2019/STG07/TARUC/02/1) from Ministry of Higher Education, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiam-Wen Liew.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, A.Y., Phang, S.W. & Liew, CW. Synthesis of poly(vinyl acetate)-based gel polymer electrolyte for application in electric double layer capacitors. Ionics 29, 3317–3334 (2023). https://doi.org/10.1007/s11581-023-05104-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05104-w

Keywords

Navigation