Skip to main content

Advertisement

Log in

Studies on bond relationship between energy of activation and catalytic activity of azomethine polymer framework enveloped over mesquite carbon hybrid composite electrodes for energy production applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the contemporary research work, an effort has been accomplished to correlate the catalytic activity bond relation with surface area and activation energy of the developed Ni-Co alloy–coated azomethine polymer framework enveloped over mesquite carbon hybrid electrodes for power device applications. For this perspective, a composite supporting material was developed using 3,3′-diaminobenzidine, terephthaldehyde and amine-functionalized mesquite carbon (AMC) via in situ aldimine condensation polymerization process. A series of Co–Ni alloy nanoparticle–coated azomethine polymer framework enveloped over mesquite carbon hybrid composite catalysts were developed, and their catalytic performance relations were determined using appropriate modern techniques. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDAX), highly resolution transmission electron microscopy (HRTEM), and cyclic voltammetry were utilized to distinguish and to find the nature of chemical bonds present, phase morphology, chemical composition, crystal structure, activation energy, surface area, and their relationship exist towards electrocatalytic activity of the prepared catalysts. In the data obtained from different modern analytical techniques, it was inferred that the Ni-Co alloy hybrid composites that were developed in the present research work possess the higher current density (30.1 mA/mg), significantly lower onset potential (0.30 V), lower activation energy (20.60 kJ/mol), and higher electro-active surface area. These results indicate that the prepared Ni-Co alloy–coated azomethine polymer framework enveloped over mesquite carbon hybrid composite electrodes will pave an avenue to a new phase of renewable biomaterials for non-precious metal nanoparticles, which is considered to be an efficient and cost effective electrocatalysts for energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang H, Wang X (2014) Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J Mater Chem A 2:6266–6291

    Article  CAS  Google Scholar 

  2. Tiwari JN, Tiwari RN, Singh G, Kim KS (2013) Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2:553–578

    Article  CAS  Google Scholar 

  3. Tritsaris GA, Rossmeisl J (2012) Methanol oxidation on model elemental and bimetallic transition metal surfaces. J Phys Chem C 116:11980–11986

    Article  CAS  Google Scholar 

  4. Wang J, Cheng N, Banis MN, Xiao B, Riese A, Sun X (2015) Comparative study to understand the intrinsic properties of Pt and Pd catalysts for methanol and ethanol oxidation in alkaline media. Electrochim Acta 185:267–275

    Article  CAS  Google Scholar 

  5. Hanifah MFR, Jaafar J, Othman MHD, Ismail AF, Rahman MA, Yusof N, Aziz F, AbdRahman NA (2019) One-pot synthesis of efficient reduced graphene oxide supported binary Pt-Pd alloy nanoparticles as superior electro-catalyst and its electro-catalytic performance toward methanol electrooxidation reaction in direct methanol fuel cell. J Alloys Compd 793:232–246

    Article  CAS  Google Scholar 

  6. Zainoodin AM, Kamarudin SK, Daud WRW (2010) Electrode in direct methanol fuel cells. Int J Hydrogen Energy 35:4606–4621

    Article  CAS  Google Scholar 

  7. Sunitha M, Durgadevi N, Sathish A, Ramachandran T (2018) Performance evaluation of nickel as anode catalyst for DMFC in acidic and alkaline medium. J Fuel Chem Technol 46:592–599

    Article  CAS  Google Scholar 

  8. Rahim MA, Hameed RA, Khalil M (2004) Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J Power Sources 134:160–169

    Article  Google Scholar 

  9. Li J, Luo Z, Zuo Y, Liu J, Zhang T, Tang P, Arbiol J, Llorca J, Cabot A (2018) NiSn bimetallic nanoparticles as stable electrocatalysts for methanol oxidation reaction. Appl Catal B 234:10–18

    Article  CAS  Google Scholar 

  10. Cui X, Xiao P, Wang J, Zhou M, Guo W, Yang Y, He Y, Wang Z, Yang Y, Zhang Y, Lin Z (2017) Highly branched metal alloy networks with superior activities for the methanol oxidation reaction. Angew Chem Int Ed 129:4559–4564

    Article  Google Scholar 

  11. Danaee I, Jafarian M, Mirzapoor A, Gobal F, Mahjani MG (2010) Electrooxidation of methanol on NiMn alloy modified graphite electrode. Electrochim Acta 55:2093–2100

    Article  CAS  Google Scholar 

  12. Candelaria SL, Bedford NM, Woehl TJ, Rentz NS, Showalter AR, Pylypenko S, Bunker BA, Lee S, Reinhart B, Ren Y, Ertem SP, Coughlin EB, Sather NA, Horan JL, Herring AM, Greenlee LF (2017) Multi-component Fe–Ni hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions. ACS Catal 7:365–379

    Article  CAS  Google Scholar 

  13. Tang Y, Chen Y, Zhou P, Zhou Y, Lu L, Bao J, Lu T (2010) Electro-catalytic performance of PdCo bimetallic hollow nanospheres for the oxidation of formic acid. J Solid State Electr 14:2077–2082

    Article  CAS  Google Scholar 

  14. Gao M, Liu X, Irfan M, Shi J, Wang X, Zhang P (2018) Nickle-cobalt composite catalyst-modified activated carbon anode for direct glucose alkaline fuel cell. Int J Hydrogen Energ 43:1805–1815

    Article  CAS  Google Scholar 

  15. Wu F, Zhang Z, Zhang F, Duan D, Li Y, Wei G, Liu S, Yuan Q, Wang E, Hao X (2018) Exploring the role of cobalt in promoting the electroactivity of amorphous Ni-B nanoparticles toward methanol oxidation. Electrochim Acta 287:115–123

    Article  CAS  Google Scholar 

  16. Selvaraj V, Alagar M, Sathish Kumar K (2007) Synthesis and characterization of metal nanoparticles decorated PPY–CNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications. Appl Catal B-Environ 75:129–138

    Article  CAS  Google Scholar 

  17. Kim M, Firestein KL, Fernando JFS, Xu X, Lim H, Golberg DV, Na J, Kim J, Nara H, Tang J, Yamauchi Y (2022) Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: from the perspective of nanoarchitectonics. Chem Sci 13:10836–10845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Selvaraj V, ThamilMagal R (2018) Development of rice straw black liquor based porous carbon-poly(aniline-co-methoxy aniline) as supporting for electrochemical performances of alcohol oxidations. Ionics 24:3923–3935

    Article  Google Scholar 

  19. Selvaraj V, Alagar M (2007) Pt and Pt–Ru nanoparticles decorated polypyrrole/multi walled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem Commun 9:1145–1153

    Article  CAS  Google Scholar 

  20. Saranya D, Selvaraj V (2017) Hydrothermal assisted synthesis of zeolite based nickel deposited poly(pyrrole-co-fluoro aniline)/CuS catalyst for methanol and Sulphur fuel cell applications. J Electroanal Chem 787:55–65

    Article  Google Scholar 

  21. Kim M, Wang C, Earnshaw J, Park T, Amirilian N, Ashok A, Na J, Han M, Rowan AE, Li J, Yi JW, Yamauchi Y (2022) Co, Fe and N co-doped 1D assembly of hollow carbon nanoboxes for high-performance supercapacitors. J Mater Chem A 10:24056–24063

    Article  CAS  Google Scholar 

  22. Kim M, Xin R, Earnshaw J, Tang J, Hill JP, Ashok A, Nanjundan A, Kim J, Young C, Sugahara Y, Na J, Yamauch Y (2022) MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nat Protoc 17:2990–3027

    Article  CAS  PubMed  Google Scholar 

  23. Conway BE, Pell WG, Liu T (1997) Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. Journal of Power Sources 65:53-59

  24. Arunkumar K, Selvaraj V (2021) Development of livestock poultry waste based Ni-Co/S green nanocomposite catalysts: a facile one-pot in situ solvothermal method for alkaline methanol oxidation and super capacitor applications. Ionics 27:3587–3603

    Article  CAS  Google Scholar 

  25. Kim M, Fernando JFS, Li Z, Alowasheeir A, Ashok A, Xin R, Martin D, Nanjundan A, Golberg DV, Yamauchi Y, Amiralian N, Li J (2022) Ultra-stable sodium ion storage of biomass porous carbon derived from sugarcane. Chem Eng J 445:136344

    Article  CAS  Google Scholar 

  26. Kailappan R, Gothandapani L, Viswanathan R (2000) Production of activated carbon fromprosopis (Prosopisjuliflora). BioresourTechnol 75:241–243

    Article  CAS  Google Scholar 

  27. Elfadl MA, Luukkanen O (2003) Effect of pruning on Prosopisjuliflora: considerations for tropical dryland agroforestry. J Arid Environ 53:441–455

    Article  Google Scholar 

  28. Shen J, Huang W, Wu L, Hu Y, Ye M (2017) The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Compos Sci Technol 67:3041–3050

    Article  Google Scholar 

  29. Ehsani A, Mahjani MG, Jafarian M (2011) An electrochemical study of the synthesis and properties of multi-walled carbon nanotube/poly ortho aminophenol composites. Synth Met 161:1760–1765

    Article  CAS  Google Scholar 

  30. Peng XY, Liu XX, Hua PJ, Diamond D, Lau KT (2010) Electrochemical codeposition of nickel oxide and polyaniline. J Solid State Electrochem 14:1–7

    Article  CAS  Google Scholar 

  31. Mahjani MG, Ehsani A, Jafarian M (2010) Electrochemical study on the semiconductor properties and fractal dimension of poly ortho aminophenol modified graphite electrode in contact with different aqueous electrolytes. Synth Met 160:1252–1259

    Article  CAS  Google Scholar 

  32. Ehsani A, Mahjani MG, Bordbar M, Moshre R (2013) Poly ortho aminophenol/TiO2 nanocomposite: electrosynthesis and characterization. Synth Met 165:51–55

    Article  CAS  Google Scholar 

  33. Ehsani A, Mahjani MG, Jafarian M, Naeemy A (2012) Electrosynthesis of polypyrrole composite film and electrocatalytic oxidation of ethanol. Electrochim Acta 71:128–133

    Article  CAS  Google Scholar 

  34. Ehsani A, Mahjani MG, Jafarian M (2012) Electrosynthesis of poly ortho aminophenol films and nanoparticles: a comparative study. Synth Met 62:199–204

    Article  Google Scholar 

  35. Ojani R, Raoof JB, Fathi S (2009) Poly(o-aminophenol) film prepared in the presence of sodium dodecyl sulfate: application for nickel ion dispersion and the electrocatalytic oxidation of methanol and ethylene glycol. Electrochim Acta 54:2190–2196

    Article  CAS  Google Scholar 

  36. Eramo FD, Marioli JM, Arevalo AA, Sereno LE (1999) HPLC analysis of carbohydrates with electrochemical detection at a poly-1-naphthylamine/copper modified electrode. Electroanalysis 11:481–486

    Article  Google Scholar 

  37. YılmazBaran N, Saçak M (2017) Synthesis, characterization and molecular weight monitoring of a novel Schiff base polymer containing phenol group: thermal stability, conductivity and antimicrobial properties. J Mol Struct 1146:104–112

    Article  Google Scholar 

  38. Li H, Bai J, Shi Z, Yin J (2016) Environmental friendly polymers based on Schiff-base reaction with self-healing, remolding and degradable ability. Polymer 85:106–113

    Article  CAS  Google Scholar 

  39. Jung SH, Lee TW, Kim YC, Suh DH, Cho HN (2002) Synthesis and characterization of fluorene-based poly(azomethines). Opt Mater 21:169–173

    Article  Google Scholar 

  40. Iwan A, Boharewicz B, Tazbir I, Malinowski M, Filapek M, Kłąb T, Luszczynska B, Glowacki I, Korona KP, Kaminska M, Wojtkiewicz J, Lewandowska M, Hreniak A (2015) New environmentally friendly polyazomethines with thiophene rings for polymer solar cells. Sol Energy 117:246–259

    Article  CAS  Google Scholar 

  41. Iwan A, Palewicz M, Chuchmała A, Sikora A, Gorecki L, Sek D (2013) Opto(electrical) properties of triphenylamine-based polyazomethine and its blend with [6,6]-phenyl C61 butyric acid methyl ester. High Perform Polym 25:832–842

    Article  Google Scholar 

  42. Kang JW, Kim JJ, Kim J, Li X, Lee MH (2002) Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluorinated polyimide. IEEE Photonic Tech L 149:1297–1299

    Article  Google Scholar 

  43. Selvaraj V, Raghavarshinia TR, Alagar M (2020) Development of Prosopisjuliflora carbon reinforced PET bottle waste-based epoxy-blended bio-phenolic benzoxazine composites for advanced applications. RSC Adv 10:5656–5665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rehman A, Park SJ (2017) Facile synthesis of nitrogen-enriched microporous carbons derived from imine and benzimidazole-linked polymeric framework for efficient CO2adsorption. J CO2 Util 21:503–512

  45. Rabbani MG, Sekizkardes AK, Kahveci Z, Reich TE, Ding R, El-Kaderi HM (2013) A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications. Chem Eur J 19:3324–3328

    Article  CAS  PubMed  Google Scholar 

  46. Pandey P, Katsoulidis AP, Eryazici I, Wu Y, Kanatzidis MG, Nguyen ST (2010) Imine linked microporous polymer organic frameworks. Chem Mater 22:4974–4979

    Article  CAS  Google Scholar 

  47. Rehman A, Park SJ (2017) Facile synthesis of nitrogen-enriched microporous carbons derived from imine and benzimidazole-linked polymeric framework for efficient CO2 adsorption. J CO2 Util 21:503–512

  48. Rabbani MG, El-Kaderi HM (2012) Synthesis and characterization of porous benzimidazole- linked polymers and their performance in small gas storage and selective uptake. Chem Mater 24:1511–1517

    Article  CAS  Google Scholar 

  49. Yu H, Tian M, Shen C, Wang Z (2013) Facile preparation of porous polybenzimidazole networks and adsorption behavior of CO2 gas, organic and water vapors. Polym Chem 4:961–968

    Article  CAS  Google Scholar 

  50. Lippe M, Szczepaniak U, Hou GL, Chakrabarty S, Ferreiro JJ, Chasovskikh E, Signorell R (2019) Infrared spectroscopy and mass spectrometry of CO2 clusters during nucleation and growth. J Phys Chem A 123:2426–2437

    Article  CAS  PubMed  Google Scholar 

  51. Sekizkardes AK, İslamoğlu T, Kahveci Z, El-Kaderi HM (2014) Application of pyrenederived benzimidazole-linked polymers to CO2 separation under pressure and vacuum swing adsorption settings. J Mater Chem A 2:12492–12500

    Article  CAS  Google Scholar 

  52. Li T, Li Y, Wang H-G, Si Z (2020) Electrospun carbon nanofiber decorated with Co-Ni alloy nanoparticles as a bifunctional electrocatalyst for Zn-Ir battery. Mater Lett 275:128135

    Article  CAS  Google Scholar 

  53. Oroujizad S, Almasi-Kashi M, Alikhanzadeh-Arani S (2020) Sn addition effect on magnetic reversibility of Co–Ni alloy nanoparticles based on the FORC results. Mater Chem Phy 243:122575–122582

    Article  CAS  Google Scholar 

  54. Qiu J, Yin H, Hou J, Yu X (2013) Zuo, Preparation of nitrogen-doped carbon submicrotubes by coaxial electrospinning and their electrocatalytic activity for oxygen reduction reaction in acid media. Electrochim Acta 96:225–229

    Article  CAS  Google Scholar 

  55. Deng Z, Yi Q, Zhang Y, Nie H (2017) NiCo/C-N/CNT composite catalysts for electro-catalytic oxidation of methanol and ethanol. J Electroanal Chem 803:95–103

    Article  CAS  Google Scholar 

  56. Kim HJ, Choi SM, Nam SH, Seo MH, Kim WB (2009) Carbon-supported PtNi catalysts for electrooxidation of cyclohexane to benzene over polymer electrolyte fuel cells. Catal Today 146:9–14

    Article  CAS  Google Scholar 

  57. Jiang Q, Jiang L, Hou H, Qi J, Wang S, Sun G (2010) Promoting effect of Ni in PtNi bimetallic electrocatalysts for the methanol oxidation reaction in alkaline media: experimental and density functional theory studies. J Phys Chem C 114:19714–19722

    Article  CAS  Google Scholar 

  58. Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992

    Article  CAS  Google Scholar 

  59. Li T, Li Y, Wanga H, Si Z (2020) Electrospun carbon nanofiber decorated with Co-Ni alloy nanoparticles as a bifunctional electrocatalyst for Zn-ir battery. Mater Lett 275:128135–128138

    Article  CAS  Google Scholar 

  60. Su X, Li S (2021) PVP-stabilized CoeNi nanoparticles as magnetically recyclable catalysts for hydrogen production from methanolysis of ammonia borane. Int J Hydrogen Energ 46:1438–14394

    Article  Google Scholar 

  61. Tong YY, Gu CD, Zhang JL, Tang H, Li Y, Wang XL, Tu JP (2016) Urchin-like Ni-Co-P-O nanocomposite as novel methanol electro-oxidation materials in alkaline environment. Electrochim Acta 187:11–19

    Article  CAS  Google Scholar 

  62. Abdel Hameed RM, El-Sherif RM (2015) Microwave irradiated nickel nanoparticles on Vulcan XC- 72R carbon black for methanol oxidation reaction in KOH solution. Appl Catal B Environ 162:217–226

    Article  CAS  Google Scholar 

  63. Barakat NAM, Motlak M (2014) CoxNiy-decorated graphene as novel, stable and super effective non-precious electro-catalyst for methanol oxidation. Appl Catal B Environ 154:221–231

    Article  Google Scholar 

  64. Yi Q, Huang W, Zhang J, Liu X, Li L (2008) Methanol oxidation on titanium-supported nano-scale Ni flakes. Catal Commun 9:2053–2058

    Article  CAS  Google Scholar 

  65. Barakat NAM, Motlak M, Elzatahry AA, Khalil KA, Abdelghani EAM (2014) NixCo1-x alloy nanoparticle–doped carbon nanofibers as effective non-precious catalyst for ethanol oxidation. Int J Hydrogen Energ 39:305–316

    Article  CAS  Google Scholar 

  66. Prasanna D, Selvaraj V (2016) Cyclophosphazene based conductive polymer-carbon nanotube composite as novel supporting material for methanol fuel cell applications. J Colloid Interface Sci 472:116–125

    Article  CAS  PubMed  Google Scholar 

  67. Barakat NAM, Abdelkareem MA, Yousef A, Al-Deyab SS, El-Newehy M, Kim HY (2013) Cadmium-doped cobalt/carbon nanoparticles as novel nonprecious electrocatalyst for methanol oxidation. Int J Hydrogen Energ 38:3387–3394

    Article  CAS  Google Scholar 

  68. Vol’fkovich YM, Vasil’ev YB, Bagotskii VS (1969) Mechanism of the electrooxidation of methanol on a smooth platinum electrode in alkaline solution. Russ Chem Bull 18:1757–1763

  69. Cohen JL, Volpe DJ, Abruna HD (2007) Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys Chem Chem Phys 9:49–77

    Article  CAS  PubMed  Google Scholar 

  70. Cui X, Xiao P, Wang J, Zhou M, Guo W, Yang Y, He Y, Wang Z, Yang Y, Zhang Y, Lin Z (2017) Highly branched metal alloy networks with superior activities for the methanol oxidation reaction. Angew Chemie Int Ed 56:4488–4493

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Selvaraj.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 128 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunkumar, K., Selvaraj, V. & Alagar, M. Studies on bond relationship between energy of activation and catalytic activity of azomethine polymer framework enveloped over mesquite carbon hybrid composite electrodes for energy production applications. Ionics 29, 2449–2464 (2023). https://doi.org/10.1007/s11581-023-04989-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04989-x

Keywords

Navigation