Skip to main content
Log in

N-doped graphene/La0.4Sr0.6Co0.8Ni0.2O3 as an efficient electrocatalyst for oxygen electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The perovskite oxide La0.4Sr0.6Co0.8Ni0.2O3 was prepared by sol–gel method and applied to the oxygen electrode. To further improve its catalytic activity, N-doped graphene (NG) was coupled with La0.4Sr0.6Co0.8Ni0.2O3. The samples were characterized structurally and morphologically using XRD, SEM, and FT-IR. The electrochemical test results showed that the current densities for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalyzed by the hybrid catalyst 10%NG (NG in total catalyst mass ratio of 10%) were 359 mA·cm−2 (0.9 V vs. Hg/HgO) and 393 mA·cm−2 (− 0.6 V vs. Hg/HgO), respectively. The excellent ORR/OER activity and stability of the hybrid catalyst can be attributed to the synergistic effect between La0.4Sr0.6Co0.8Ni0.2O3 and NG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Kim NI, Afzal RA, Choi SR et al (2017) Highly active and durable nitrogen doped-reduced graphene oxide/double perovskite bifunctional hybrid catalysts[J]. J Mater Chem A 5(25):13019–13031. https://doi.org/10.1039/C7TA02283B

    Article  CAS  Google Scholar 

  2. Su CY, Cheng H, Li W et al (2017) Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery[J]. Adv Energy Mater 7(13):1602420. https://doi.org/10.1002/aenm.201602420

    Article  CAS  Google Scholar 

  3. Zeng K, Zheng X, Li C et al (2020) Recent advances in non-noble bifunctional oxygen electrocatalysts toward large-scale production[J]. Adv Func Mater 30(27):2000503. https://doi.org/10.1002/adfm.202000503

    Article  CAS  Google Scholar 

  4. Sun Y, Li R, Chen XX et al (2021) A-site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts[J]. Adv Energy Mater 11(12):2003755. https://doi.org/10.1002/aenm.202003755

    Article  CAS  Google Scholar 

  5. Yang XB, Wang YY, Tong XL et al (2022) Strain engineering in electrocatalysts: fundamentals, progress, and perspectives[J]. Adv Energy Mater 12(5):2102261. https://doi.org/10.1002/aenm.202102261

    Article  CAS  Google Scholar 

  6. Park MG, Lee DU, Seo MH et al (2016) 3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries[J]. Small 12(20):2707–2714. https://doi.org/10.1002/smll.201600051

    Article  CAS  PubMed  Google Scholar 

  7. Liao Q, Li GX, Ding RD et al (2021) Facile synthesis of Co/N-doped carbon nanotubes and the application in alkaline and neutral metal-air batteries[J]. Int J Hydrogen Energy 46(61):31253–31261. https://doi.org/10.1016/j.ijhydene.2021.07.019

    Article  CAS  Google Scholar 

  8. Chen Z, Yu AP, Higgins D et al (2012) Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application[J]. Nano Lett 12(4):1946–1952. https://doi.org/10.1021/nl2044327

    Article  CAS  PubMed  Google Scholar 

  9. Shang WX, Yu WT, Tan P et al (2019) Achieving high energy density and efficiency through integration: progress in hybrid zinc batteries[J]. J Mater Chem A 7(26):15564–15574. https://doi.org/10.1039/C9TA04710G

    Article  CAS  Google Scholar 

  10. Wang HF, Tang C, Zhang Q (2018) A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn − air batteries[J]. Adv Func Mater 28(46):1803329. https://doi.org/10.1002/adfm.201803329

    Article  CAS  Google Scholar 

  11. Hu CG, Dai LM (2016) Carbon-based metal-free catalysts for electrocatalysis beyond the ORR[J]. Angew Chem Int Ed 55(39):11736–11758. https://doi.org/10.1002/anie.201509982

    Article  CAS  Google Scholar 

  12. Kong T, Sui YW, Qi JQ et al (2021) In situ transformation of sea urchin-like NixCoyP@NF as an efficient bifunctional electrocatalyst for overall water splitting[J]. J Mater Sci Mater Electron 32(2):1951–1961. https://doi.org/10.1007/s10854-020-04963-7

    Article  CAS  Google Scholar 

  13. Bai L, Duan ZY, Wen XD et al (2019) Bifunctional atomic iron-based catalyst for oxygen electrode reactions[J]. J Catal 378:353–362. https://doi.org/10.1016/j.jcat.2019.09.009

    Article  CAS  Google Scholar 

  14. Zhang JT, Zhao ZH, Zhen HX et al (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nat Nanotechnol 10(5):444–452. https://doi.org/10.1038/nnano.2015.48

    Article  CAS  PubMed  Google Scholar 

  15. Chen TW, Kalimuthu P, Anushya G et al (2021) High-efficiency of bi-functional-based perovskite nanocomposite for oxygen evolution and oxygen reduction reaction: an overview[J]. Materials 14(11):2976. https://doi.org/10.3390/ma14112976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christy M, Rajan H, Yang H et al (2020) Optimizing the surface characteristics of La0.6Sr0.4CoO3 − δ perovskite oxide by rapid flash sintering technology for easy fabrication and fast reaction kinetics in alkaline medium[J]. Energy Fuels 34(12):16838–16846. https://doi.org/10.1021/acs.energyfuels.0c03147

  17. Li P Z, Wei B, Lü Z et al (2019) La1.7Sr0.3Co0.5Ni0.5O4 + δ layered perovskite as an efficient bifunctional electrocatalyst for rechargeable zinc-air batteries[J]. App Surf Sci 464:494–501. https://doi.org/10.1016/j.apsusc.2018.09.113

  18. Wei P, Jin JH, Yang SL et al (2021) NiCo alloy nanoparticles anchored on carbon nanotube-decorated carbon nanorods as a durable and efficient oxygen electrocatalyst for zinc-air flow batteries[J]. ACS App Energ Mater 4(10):11041–11050. https://doi.org/10.1021/acsaem.1c01967

    Article  CAS  Google Scholar 

  19. Han JX, Bao HL, Wang JQ et al (2021) 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery[J]. App Cat B: Environ 280:119411. https://doi.org/10.1016/j.apcatb.2020.119411

    Article  CAS  Google Scholar 

  20. Li JC, Li SW, Pu J et al (2020) Electronic modulation of nickel phosphide by iron doping and its assembly on a graphene framework for efficient electrocatalytic water oxidation[J]. J Alloys Comp 824:153913. https://doi.org/10.1016/j.jallcom.2020.153913

    Article  CAS  Google Scholar 

  21. Tian LL, Yang J, Weng MY et al (2017) Fast diffusion of O2 on nitrogen-doped graphene to enhance oxygen reduction and its application for high-rate Zn-Air batteries[J]. ACS Appl Mater Interfaces 9(8):7125–7130. https://doi.org/10.1021/acsami.6b15235

    Article  CAS  PubMed  Google Scholar 

  22. Wang CL, Tong HG, Lu J et al (2020) Boosting oxygen evolution reaction on graphene through engineering electronic structure[J]. Carbon 170:414–420. https://doi.org/10.1016/j.carbon.2020.08.041

    Article  CAS  Google Scholar 

  23. Wang ZP, Huang JH, Wang L et al (2022) Cation-tuning induced d-band center modulation on Co-based spinel oxide for oxygen reduction/evolution reaction[J]. Angew Chem Int Ed 61(16):e202114696. https://doi.org/10.1002/anie.202114696

    Article  CAS  Google Scholar 

  24. Lu LN, Luo YL, Liu HJ et al (2022) Multivalent CoSx coupled with N-doped CNTs/Ni as an advanced oxygen electrocatalyst for zinc-air batteries[J]. Chem Eng J 427:132041. https://doi.org/10.1016/j.cej.2021.132041

    Article  CAS  Google Scholar 

  25. Zhuang S X, Wang Z H, He JY et al (2021) Perovskite La0.5Ca0.5CoO3-δ nanocrystals on graphene as a synergistic catalyst for rechargeable zinc-air batteries[J]. Sustain Mater Tech 29:e00282. https://doi.org/10.1016/j.susmat.2021.e00282

  26. Park HW, Lee DU, Zamani PY et al (2014) Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries[J]. Nano Energy 10:192–200. https://doi.org/10.1016/j.nanoen.2014.09.009

    Article  CAS  Google Scholar 

  27. Zhang HH, Liu XQ, He GL et al (2015) Bioinspired synthesis of nitrogen/sulfur co-doped graphene as an efficient electrocatalyst for oxygen reduction reaction[J]. J Power Sources 279:252–258. https://doi.org/10.1016/j.jpowsour.2015.01.016

    Article  CAS  Google Scholar 

  28. Poon KC, Wan WY, Su HB et al (2021) One-minute synthesis via electroless reduction of amorphous phosphorus-doped graphene for oxygen reduction reaction[J]. ACS App Energ Mater 4(6):5388–5391. https://doi.org/10.1021/acsaem.1c01075

    Article  CAS  Google Scholar 

  29. Bu YF, Nam G, Kim S et al (2018) A tailored bifunctional electrocatalyst: boosting oxygen reduction/evolution catalysis via electron transfer between N-doped graphene and perovskite oxides[J]. Small 14(48):1802767. https://doi.org/10.1002/smll.201802767

    Article  CAS  Google Scholar 

  30. Makkar P, Gogoi D, Roy D et al (2021) Dual-purpose CuFe2O4-rGO-based nanocomposite for asymmetric flexible supercapacitors and catalytic reduction of nitroaromatic derivatives[J]. ACS Omega 6(43):28718–28728. https://doi.org/10.1021/acsomega.1c03377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu Y F, Yang M Z, Chen B X et al (2017) A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction[J]. J Amer Chem Soc 139(16):5660-5663. https://doi.org/10.1021/jacs.7b00489

  32. Sahoo MK, Rao GR (2021) A high energy flexible symmetric supercapacitor fabricated using N-doped activated carbon derived from palm flowers[J]. Nanoscale Adv 3(18):5417–5429. https://doi.org/10.1039/D1NA00261A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin R, Sun Y, Cai X et al (2021) Embedding Pt-Ni octahedral nanoparticles in the 3D nitrogen-doped porous graphene for enhanced oxygen reduction activity[J]. Electrochim Acta 391:138956. https://doi.org/10.1016/j.electacta.2021.138956

    Article  CAS  Google Scholar 

  34. Xiao Y, Huang H X, Liang D M, Wang C (2020) Electrocatalytic properties and modification of La0.6Ca0.4Co1-xMnxO3(x = 0–0.9) perovskite-type oxides[J]. Chem Phys Lett 738:136846. https://doi.org/10.1016/j.cplett.2019.136846

  35. Galani SM, Mondal A, Srivastava DN et al (2020) Development of RuO2/CeO2 heterostructure as an efficient OER electrocatalyst for alkaline water splitting[J]. Int J Hydrogen Energy 45(37):18635–18644. https://doi.org/10.1016/j.ijhydene.2019.08.026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (52164026) and the Research funds of the Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials (EMFM20211105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-xia Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Ch., Liu, Jl., Huang, Hx. et al. N-doped graphene/La0.4Sr0.6Co0.8Ni0.2O3 as an efficient electrocatalyst for oxygen electrode. Ionics 29, 2427–2434 (2023). https://doi.org/10.1007/s11581-023-04988-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04988-y

Keywords

Navigation