Skip to main content
Log in

Influence of PAN/PANI polymer on low-temperature rate performance of LiFePO4

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In order to improve the charge transfer rate and Li+ diffusion coefficient of LiFePO4 (LFP), the material was surface treated with polyacrylonitrile/polyaniline (PAN/PANI). PAN/PANI polymers were synthesized by a self-assembly process, and LFP@PAN/PANI were prepared by a wet-coating process. LFP@PAN/PANI exhibits superior electrochemical performance compared to bare LFP, with a discharge capacity of 3088.97 mAh at low temperature and high rate condition (−20 °C, 26650-type cylindrical battery, 5 C rate), and a relatively high low-temperature discharge plateau (2.68 V). Electrochemical impedance spectroscopy (EIS) proves that the Li+ diffusion coefficient of LFP@PAN/PANI is an order of magnitude higher than that of bare LFP. The above performance is improved because the polar cyano group of the polymer can interact with the electrolyte and Li+, and the polyaniline makes the polymer have high conductivity. Therefore, the composite of the two polymers endows LFP with excellent Li+ activity and high conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liang F, Sun Y, Yuan Y, Huang J, Hou M, Lu J (2021) Designing inorganic electrolytes for solid-state Li-ion batteries: a perspective of LGPS and garnet. Mater Today 50:418–441

    Article  CAS  Google Scholar 

  2. Yang X, Peng C, Hou M, Zhang D, Yang B, Xue D, Lei Y, Liang F (2022) Rational design of electrolyte solvation structures for modulating 2e-/4e-transfer in sodium-air batteries. Adv Funct Mater 32(23):2201258

  3. Yang X, Su F, Hou M, Zhang D, Dai Y, Liang F (2021) Plasma tailored reactive nitrogen species in MOF derived carbon materials for hybrid sodium-air batteries. Dalton Trans 50(20):7041–7047

    Article  CAS  PubMed  Google Scholar 

  4. Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y (2019) Energy storage: the future enabled by nanomaterials. Science 366(6468):eaan8285

  5. Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  Google Scholar 

  6. Hannan MA, Hoque MM, Mohamed A, Ayob A (2017) Review of energy storage systems for electric vehicle applications: issues and challenges. Renew Sust Energ Rev 69:771–789

    Article  Google Scholar 

  7. Wang JJ, Sun XL (2015) Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ Sci 8(4):1110–1138

    Article  CAS  Google Scholar 

  8. Jung JCY, Sui PC, Zhang J (2021) A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. J Energy Storage 35:102217

  9. Wang Y, An N, Wen L, Wang L, Jiang X, Hou F, Yin Y, Liang J (2021) Recent progress on the recycling technology of Li-ion batteries. J Energy Chem 55:391–419

    Article  CAS  Google Scholar 

  10. Wu XL, Guo YG, Su J, Xiong JW, Zhang YL, Wan LJ (2013) Carbon-nanotube-decorated nano-LiFePO4 @C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv Energy Mater 3(9):1155–1160

    Article  CAS  Google Scholar 

  11. Liao L, Zuo P, Ma Y, Chen X, An Y, Gao Y, Yin G (2012) Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. Electrochim Acta 60:269–273

    Article  CAS  Google Scholar 

  12. Zhang WJ (2011) Structure and performance of LiFePO4 cathode materials: a review. J Power Sources 196(6):2962–2970

    Article  CAS  Google Scholar 

  13. Yang CC, Jang JH, Jiang JR (2016) Study of electrochemical performances of lithium titanium oxide-coated LiFePO4/C cathode composite at low and high temperatures. Appl Energy 162:1419–1427

    Article  CAS  Google Scholar 

  14. Alsamet MAMM, Burgaz E (2021) Synthesis and characterization of nano-sized LiFePO4 by using consecutive combination of sol-gel and hydrothermal methods. Electrochim Acta 367:137530

  15. Zhang B, Wang S, Li Y, Sun P, Yang C, Wang D, Liu L (2020) Review: Phase transition mechanism and supercritical hydrothermal synthesis of nano lithium iron phosphate. Ceram Int 46(18):27922–27939

    Article  CAS  Google Scholar 

  16. Ellis B, Kan WH, Makahnouk WRM, Nazar LF (2007) Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J Mater Chem 17(30):3248–3254

    Article  CAS  Google Scholar 

  17. Stenina IA, Minakova PV, Kulova TL, Desyatov AV, Yaroslavtsev AB (2021) LiFePO4/carbon nanomaterial composites for cathodes of high-power lithium ion batteries. Inorg Mater 57(6):620–628

    Article  CAS  Google Scholar 

  18. Wang H, Lai A, Huang D, Chu Y, Hu S, Pan Q, Liu Z, Zheng F, Huang Y, Li Q (2021) Y-F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries. New J Chem 45(12):5695–5703

    Article  CAS  Google Scholar 

  19. Zhang Y, Shao Z, Zhang Y (2020) Preparation of Mo-doping LiFePO4/C by carbon reduction method. Mater Manuf Process 36(4):419–425

    Article  Google Scholar 

  20. Gao Y, Xiong K, Zhang H, Zhu B (2021) Effect of Ru doping on the properties of LiFePO4/C cathode materials for lithium-ion batteries. ACS Omega 6(22):14122–14129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo J, Liang C, Cao J, Jia S (2020) Synthesis and electrochemical performance of lithium iron phosphate/carbon composites based on controlling the secondary morphology of precursors. Int J Hydrog Energy 45(58):33016–33027

    Article  CAS  Google Scholar 

  22. Cao J, Liu R, Guo H, Tian S, Zhang K, Ren X, Wang Y, Liang G (2022) High-temperature solid-phase synthesis of lithium iron phosphate using polyethylene glycol grafted carbon nanotubes as the carbon source for rate-type lithium-ion batteries. J Electroanal Chem 907:116049

  23. Yao J, Wu F, Qiu X, Li N, Su Y (2011) Effect of CeO2-coating on the electrochemical performances of LiFePO4/C cathode material. Electrochim Acta 56(16):5587–5592

    Article  CAS  Google Scholar 

  24. Wang H, Liu S, Huang Y (2014) Preparation and characterization of SnO2 and carbon co-coated LiFePO4 cathode materials. J Nanosci Nanotechnol 14(4):3281–3284

    Article  CAS  PubMed  Google Scholar 

  25. Kim JK, Manuel J, Lee MH, Scheers J, Lim DH, Johansson P, Ahn JH, Matic A, Jacobsson P (2012) Towards flexible secondary lithium batteries: polypyrrole-LiFePO4 thin electrodes with polymer electrolytes. J Mater Chem 22(30):15045–15049

    Article  CAS  Google Scholar 

  26. Raj H, Sil A (2019) PEDOT:PSS coating on pristine and carbon coated LiFePO4 by one-step process: the study of electrochemical performance. J Mater Sci Mater Electron 30(14):13604–13616

    Article  CAS  Google Scholar 

  27. Liu H, Wang GX, Wexler D, Wang JZ, Liu HK (2008) Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer. Electrochem Commun 10(1):165–169

    Article  Google Scholar 

  28. Chang HH, Chang CC, Su CY, Wu HC, Yang MH, Wu NL (2008) Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. J Power Sources 185(1):466–472

    Article  CAS  Google Scholar 

  29. Avci E, Mazman M, Uzun D, Biçer E, Şener T (2013) High performance LiFePO4/CN cathode material promoted by polyaniline as carbon-nitrogen precursor. J Power Sources 240:328–337

    Article  CAS  Google Scholar 

  30. Wurster V, Engel C, Graebe H, Ferber T, Jaegermann W, Hausbrand R (2019) Characterization of the interfaces in LiFePO4/PEO-LiTFSI composite cathodes and to the adjacent layers. J Electrochem Soc 166(3):A5410–A5420

    Article  CAS  Google Scholar 

  31. Yi W, Sun C, Jiang W, Zhai Y, Gao Y (2022) Effect of different carbon and nitrogen co-doping on electrochemical performance of LiFePO4/CN. Mater Lett 324:132713

  32. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34(8):783–810

    Article  CAS  Google Scholar 

  33. Cao Y, Qi X, Hu K, Wang Y, Gan Z, Li Y, Hu G, Peng Z, Du K (2018) Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS Appl Mater Interfaces 10(21):18270–18280

    Article  CAS  PubMed  Google Scholar 

  34. Raghavan P, Zhao X, Shin C, Baek DH, Choi JW, Manuel J, Heo MY, Ahn JH, Nah C (2010) Preparation and electrochemical characterization of polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes for lithium batteries. J Power Sources 195(18):6088–6094

    Article  CAS  Google Scholar 

  35. Tsao CH, Hsu CH, Kuo PL (2016) Ionic conducting and surface active binder of poly (ethylene oxide)-block-poly(acrylonitrile) for high power lithium-ion battery. Electrochim Acta 196:41–47

    Article  CAS  Google Scholar 

  36. Gong L, Nguyen MHT, Oh ES (2013) High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries. Electrochem Commun 29:45–47

    Article  CAS  Google Scholar 

  37. Chung SY, Kim YM, Kim JG, Kim YJ (2008) Multiphase transformation and Ostwald’s rule of stages during crystallization of a metal phosphate. Nat Phys 5(1):68–73

    Article  Google Scholar 

  38. Xia Y, Lu Y (2009) Conductive polymers/polyacrylonitrile composite fibers: fabrication and properties. Polym Compos 31(2):340–346

  39. Karbownik I, Rac O, Fiedot M, Suchorska Woźniak P, Teterycz H (2015) In situ preparation of silver-polyacrylonitrile nanocomposite fibres. Eur Polym J 69:385–395

    Article  CAS  Google Scholar 

  40. Mottaghitalab V, Spinks GM, Wallace GG (2005) The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers. Synth Met 152(1-3):77–80

    Article  CAS  Google Scholar 

  41. Karbownik I, Rac Rumijowska O, Fiedot Tobola M, Rybicki T, Teterycz H (2019) The preparation and characterization of polyacrylonitrile-polyaniline (PAN/PANI) fibers. Materials (Basel) 12(4):664

  42. Shi P, Liu ZY, Zhang XQ, Chen X, Yao N, Xie J, Jin CB, Zhan YX, Ye G, Huang JQ, Ifan ELS, Maria Magdalena T, Zhang Q (2022) Polar interaction of polymer host–solvent enables stable solid electrolyte interphase in composite lithium metal anodes. Journal of Energy. Chemistry 64:172–178

    CAS  Google Scholar 

  43. Wang Y, Zhang D, Chang C, Deng L, Huang K (2014) Controllable growth of LiFePO4 microplates of (010) and (001) lattice planes for Li ion batteries: a case of the growth manner on the Li ion diffusion coefficient and electrochemical performance. Mater Chem Phys 148(3):933–939

    Article  CAS  Google Scholar 

  44. Chen J, Whittingham M (2006) Hydrothermal synthesis of lithium iron phosphate. Electrochem Commun 8(5):855–858

    Article  CAS  Google Scholar 

  45. Gao Y (2019) Enhanced high-rate and low-temperature electrochemical properties of LiFePO4/polypyrrole cathode materials for lithium-ion batteries. Int J Electrochem Sci 14(4):3408–3417

    Article  CAS  Google Scholar 

  46. Liu XY, Peng HJ, Zhang Q, Huang JQ, Liu XF, Wang L, He X, Zhu W, Wei F (2013) Hierarchical carbon nanotube/carbon black scaffolds as short- and long-range electron pathways with superior Li-ion storage performance. ACS Sustain Chem Eng 2(2):200–206

    Article  Google Scholar 

  47. Liu W, Zhong X, Han J, Qin W, Liu T, Zhao C, Chang Z (2018) Kinetic study and pyrolysis behaviors of spent LiFePO4 batteries. ACS Sustain Chem Eng 7(1):1289–1299

    Article  Google Scholar 

  48. Zhao X, Liu B, Yang J, Hou J, Wang Y, Zhu Y (2020) Synthesizing LiNi0.5Co0.2Mn0.3O2 with microsized peanut-like structure for enhanced electrochemical properties of lithium ion batteries. J Alloys Compd 832:154464

    Article  CAS  Google Scholar 

  49. Abraham K, M. (1990) Li+-conductive solid polymer electrolytes with liquid-like conductivity. J Electrochem Soc 137(5):1657–1658

    Article  CAS  Google Scholar 

  50. Kanagaraj AB, Chaturvedi P, Alkindi TS, Susantyoko RA, An BH, Patole SP, Shanmugam K, AlMheiri S, AlDahmani S, AlFadaq H, Choi DS (2018) Mechanical, thermal and electrical properties of LiFePO4/MWCNTs composite electrodes. Mater Lett 230:57–60

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Ministry of Science and Technology major special projects (Grant number: SQ2020YFF0400789) for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangchuan Liang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Guo, H., Gu, H. et al. Influence of PAN/PANI polymer on low-temperature rate performance of LiFePO4. Ionics 29, 2175–2189 (2023). https://doi.org/10.1007/s11581-023-04983-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04983-3

Keywords

Navigation