Skip to main content

Advertisement

Log in

TaC-modified LiFePO4/C composite as cathode material for high-performance lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The further development of electrode materials with both high capacity and rate capability is necessary for meeting the continuing requirement for increasing high-energy density and long-cycle life of lithium-ion batteries (LIBs). Herein, a cathode material of LIBs, LiFePO4/C modified with high electrical conductivity compound tantalum carbide (TaC) is successfully synthesized by a hydrothermal method. The co-coating of nano-sized TaC and amorphous carbon layer on the surface of LiFePO4 particles can facilitate good electrons and Li ions transfer, leading to faster electrochemical kinetics. As the cathode material for LIBs, this composite presents both excellent electrochemical performances with high reversible capacity (159.0 mAh g−1, 0.1C) and improved rate capacity. The methodology developed in this paper demonstrates a new prospect for the application of transition metal carbides (TMCs) in the modification of battery electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Y, Wang Y, Hosono E, Wang K, Zhou H (2008) The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed Engl 47(39):7461–7465. https://doi.org/10.1002/anie.200802539

    Article  CAS  PubMed  Google Scholar 

  2. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603. https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  3. Yang L, Tian Y, Chen J, Gao J, Long Z, Deng W, Zou G, Hou H, Ji X (2021) A high-rate capability LiFePO4/C cathode achieved by the modulation of the band structures. J Mater Chem A 9(43):24686–24694. https://doi.org/10.1039/D1TA07757K

    Article  CAS  Google Scholar 

  4. Duan J, Tang X, Dai H, Yang Y, Wu W, Wei X, Huang Y (2019) Building safe lithium-ion batteries for electric vehicles: a review. Electrochemical Energy Reviews 3(1):1–42. https://doi.org/10.1007/s41918-019-00060-4

    Article  CAS  Google Scholar 

  5. Qian H, Ren H, Zhang Y, He X, Li W, Wang J, Hu J, Yang H, Sari HMK, Chen Y, Li X (2022) Surface doping vs. bulk doping of cathode materials for lithium-ion batteries: a review. Electrochem Energy Rev 6(1):2. https://doi.org/10.1007/s41918-022-00155-5

    Article  CAS  Google Scholar 

  6. Xia X, Yang J, Liu Y, Zhang J, Shang J, Liu B, Li S, Li W (2022) Material choice and structure design of flexible battery electrode, Advanced. Science:e2204875. https://doi.org/10.1002/advs.202204875

  7. Saikia D, Deka JR, Chou C-J, Lin C-H, Yang Y-C, Kao H-M (2019) Encapsulation of LiFePO4 nanoparticles into 3D interpenetrating ordered mesoporous carbon as a high-performance cathode for lithium-ion batteries exceeding theoretical capacity. ACS Appl Energy Mater 2(2):1121–1133. https://doi.org/10.1021/acsaem.8b01682

    Article  CAS  Google Scholar 

  8. Su D, Liu L, Liu Z, Dai J, Wen J, Yang M, Jamil S, Deng H, Cao G, Wang X (2020) Electrospun Ta-doped TiO2/C nanofibers as a high-capacity and long-cycling anode material for Li-ion and K-ion batteries. J Mater Chem A 8(39):20666–20676. https://doi.org/10.1039/d0ta06327d

    Article  CAS  Google Scholar 

  9. Jarolimek K, Risko C (2021) Modification of the LiFePO4 (010) surface due to exposure to atmospheric gases. ACS Appl Mater Interfaces 13(24):29034–29040. https://doi.org/10.1021/acsami.1c01394

    Article  CAS  PubMed  Google Scholar 

  10. Lin Y, Zhang X, Liu Y, Wang Q, Lin C, Chen S, Zhang Y, Li U-s (2022) LiFePO4 batteries via advanced designing of localized high concentration electrolyte. J Colloid Interface Sci 628(Pt B):14–23. https://doi.org/10.1016/j.jcis.2022.08.018

    Article  CAS  PubMed  Google Scholar 

  11. Sun C, Zhang Y, Zhang X, Zhou Z (2010) Structural and electrochemical properties of Cl-doped LiFePO4/C. J Power Sources 195(11):3680–3683. https://doi.org/10.1016/j.jpowsour.2009.12.074

    Article  CAS  Google Scholar 

  12. Liu X, Zhang Y, Meng Y, Kang T, Gao H, Huang L, Zhu F (2022) Influence mechanism of Mg2+ doping on electrochemical properties of LiFePO4 cathode materials. ACS Appl Energy Mater 5(7):8452–8459. https://doi.org/10.1021/acsaem.2c00986

    Article  CAS  Google Scholar 

  13. Zhang B, Ma X, Hou W, Yuan W, He L, Yang O, Liu Y, Wang J, Xu Y Revealing the ultrahigh rate performance of the La and Ce co-doping LiFePO4 composite. ACS Appl Energy Mater. https://doi.org/10.1021/acsaem.2c02035

  14. Cui Z, Guo X, Ren J, Xue H, Tang F, La P, Li H, Li J, Lu X (2021) Enhanced electrochemical performance and storage mechanism of LiFePO4 doped by Co, Mn and S elements for lithium-ion batteries. Electrochim Acta:388. https://doi.org/10.1016/j.electacta.2021.138592

  15. Oh SW, Myung ST, Oh SM, Oh KH, Amine K, Scrosati B, Sun YK (2010) Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv Mater 22(43):4842–4845. https://doi.org/10.1002/adma.200904027

    Article  CAS  PubMed  Google Scholar 

  16. Hu Y, Wang G, Liu C, Chou S-L, Zhu M, Jin H, Li W, Li Y (2016) LiFePO4/C nanocomposite synthesized by a novel carbothermal reduction method and its electrochemical performance. Ceram Int 42(9):11422–11428. https://doi.org/10.1016/j.ceramint.2016.04.075

    Article  CAS  Google Scholar 

  17. Li X, Meng Y, Chen X, Wang Y, Xiao D (2022) Nano-LiFePO4/C derived from gaseous-oxidation engineering-synthesized amorphous mesoporous nano-FePO4 for high-rate Li-ion batteries. Ind Eng Chem Res 61(26):9311–9321. https://doi.org/10.1021/acs.iecr.2c01006

    Article  CAS  Google Scholar 

  18. Cao J, Qu Y, Guo R (2012) La0.6Sr0.4CoO3-δ modified LiFePO4/C composite cathodes with improved electrochemical performances. Electrochim Acta 67:152–158. https://doi.org/10.1016/j.electacta.2012.02.031

    Article  CAS  Google Scholar 

  19. Jin Y, Yang C, Rui X, Cheng T, Chen C (2011) V2O3 modified LiFePO4/C composite with improved electrochemical performance. J Power Sources 196(13):5623–5630. https://doi.org/10.1016/j.jpowsour.2011.02.059

    Article  CAS  Google Scholar 

  20. Yin Y, Gao M, Pan H, Shen L, Ye X, Liu Y, Fedkiw PS, Zhang X (2012) High-rate capability of LiFePO4 cathode materials containing Fe2P and trace carbon. J Power Sources 199:256–262. https://doi.org/10.1016/j.jpowsour.2011.10.042

    Article  CAS  Google Scholar 

  21. Pan F, Chen X, Li H, Xin X, Chang Q, Jiang K, Wang W (2011) Influence of carbon coating porosity on the electrochemical performance of LiFePO4 cathode. Electrochem Commun 13(7):726–729. https://doi.org/10.1016/j.elecom.2011.04.021

    Article  CAS  Google Scholar 

  22. Lin Y, Lin Y, Zhou T, Zhao G, Huang Y, Huang Z (2013) Enhanced electrochemical performances of LiFePO4/C by surface modification with Sn nanoparticles. J Power Sources 226:20–26. https://doi.org/10.1016/j.jpowsour.2012.10.074

    Article  CAS  Google Scholar 

  23. Zhang M, Garcia-Araez N, Hector AL, Owen JR (2017) A sol-gel route to titanium nitride conductive coatings on battery materials and performance of TiN-coated LiFePO4. J Mater Chem A 5(5):2251–2260. https://doi.org/10.1039/c6ta09572k

    Article  CAS  Google Scholar 

  24. Ren X, Li Y, Xi X, Yang J, Wang S, Liu S, Zheng J, He Z, Yang Y, Wang T, Wu Q (2023) High performance LiFePO4 nanomaterial obtained by a tavorite-to-olivine phase transition at low-temperature. Chem Eng J:453. https://doi.org/10.1016/j.cej.2022.139611

  25. Liu C, An J, Guo R, Li Y, Liu L (2013) Enhanced electrochemical performance of LiFePO4/C cathode material modified with highly conductive TiN. J Alloys Compd 563:33–38. https://doi.org/10.1016/j.jallcom.2013.02.080

    Article  CAS  Google Scholar 

  26. Huang H, Feng T, Gan Y, Fang M, Xia Y, Liang C, Tao X, Zhang W (2015) TiC/NiO core/shell nanoarchitecture with battery-capacitive synchronous lithium storage for high-performance lithium-ion battery. ACS Appl Mater Interfaces 7(22):11842–11848. https://doi.org/10.1021/acsami.5b01372

    Article  CAS  PubMed  Google Scholar 

  27. Hunt ST, Nimmanwudipong T, Roman-Leshkov Y (2014) Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis. Angew Chem Int Ed Engl 53(20):5131–5136. https://doi.org/10.1002/anie.201400294

    Article  CAS  PubMed  Google Scholar 

  28. Naguib M, Halim J, Lu J, Cook KM, Hultman L, Gogotsi Y, Barsoum MW (2013) New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc 135(43):15966–15969. https://doi.org/10.1021/ja405735d

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Kelly TG, Chen JG, Mustain WE (2013) Metal carbides as alternative electrocatalyst supports. ACS Catal 3(6):1184–1194. https://doi.org/10.1021/cs4001249

    Article  CAS  Google Scholar 

  30. Vallance SR, Round DM, Ritter C, Cussen E, Kingman S, Gregory DH (2009) Ultrarapid microwave synthesis of superconducting refractory carbides. Adv Mater 21(44):4502–4504. https://doi.org/10.1002/adma.200900968

    Article  CAS  Google Scholar 

  31. Kim B-R, Woo K-D, Doh J-M, Yoon J-K, Shon I-J (2009) Mechanical properties and rapid consolidation of binderless nanostructured tantalum carbide. Ceram Int 35(8):3395–3400. https://doi.org/10.1016/j.ceramint.2009.06.012

    Article  CAS  Google Scholar 

  32. Tao X, Du J, Li Y, Yang Y, Fan Z, Gan Y, Huang H, Zhang W, Dong L, Li X (2011) TaC nanowire/activated carbon microfiber hybrid structures from bamboo fibers. Adv Energy Mater 1(4):534–539. https://doi.org/10.1002/aenm.201100191

    Article  CAS  Google Scholar 

  33. Snyder MQ, Trebukhova SA, Ravdel B, Wheeler MC, DiCarlo J, Tripp CP, DeSisto WJ (2007) Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode. J Power Sources 165(1):379–385. https://doi.org/10.1016/j.jpowsour.2006.12.015

    Article  CAS  Google Scholar 

  34. Yang LX, Liu RJ, Bu HP, Liu HJ, Zeng CL, Fu C (2022) TiC Nanomaterials with varying dimensionalities as anode materials for lithium-ion batteries. ACS Appl Nano Mater 5(8):11787–11796. https://doi.org/10.1021/acsanm.2c02781

    Article  CAS  Google Scholar 

  35. Liu Y, Zhang M, Li Y, Hu Y, Zhu M, Jin H, Li W (2015) Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery. Electrochim Acta 176:689–693. https://doi.org/10.1016/j.electacta.2015.07.064

    Article  CAS  Google Scholar 

  36. Gaberscek M, Dominko R, Jamnik J (2007) Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem Commun 9(12):2778–2783. https://doi.org/10.1016/j.elecom.2007.09.020

    Article  CAS  Google Scholar 

  37. Liu H, Wang G, Wexler D, Wang J, Liu H-K (2008) Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer. Electrochem Commun 10(1):165–169. https://doi.org/10.1016/j.elecom.2007.11.016

    Article  CAS  Google Scholar 

  38. Song G-M, Wu Y, Xu Q, Liu G (2010) Enhanced electrochemical properties of LiFePO4 cathode for Li-ion batteries with amorphous NiP coating. J Power Sources 195(12):3913–3917. https://doi.org/10.1016/j.jpowsour.2009.12.089

    Article  CAS  Google Scholar 

  39. Belharouak I, Johnson C, Amine K (2005) Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochem Commun 7:983–988. https://doi.org/10.1016/j.elecom.2005.06.019

    Article  CAS  Google Scholar 

  40. Chang H-H, Chang C-C, Su C-Y, Wu H-C, Yang M-H, Wu N-L (2008) Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. J Power Sources 185(1):466–472. https://doi.org/10.1016/j.jpowsour.2008.07.021

    Article  CAS  Google Scholar 

  41. Meng H, Zhou P, Zhang Z, Tao Z, Chen J (2017) Preparation and characterization of LiNi0.8Co0.15Al0.05O2 with high cycling stability by using AlO2- as Al source. Ceram Int 43(4):3885–3892. https://doi.org/10.1016/j.ceramint.2016.12.054

    Article  CAS  Google Scholar 

  42. Zhang Y, Wang W, Li P, Fu Y, Ma X (2012) A simple solvothermal route to synthesize graphene-modified LiFePO4 cathode for high power lithium ion batteries. J Power Sources 210:47–53. https://doi.org/10.1016/j.jpowsour.2012.03.007

    Article  CAS  Google Scholar 

  43. Jin B, Jin EM, Park K-H, Gu H-B (2008) Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery. Electrochem Commun 10(10):1537–1540. https://doi.org/10.1016/j.elecom.2008.08.001

    Article  CAS  Google Scholar 

  44. Dathar GKP, Sheppard D, Stevenson KJ, Henkelman G (2011) Calculations of Li-ion diffusion in olivine phosphates. Chem Mater 23(17):4032–4037. https://doi.org/10.1021/cm201604g

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for the financial support from the National Natural Science Foundation of China (No. 21908142).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Liu, Qinsi Shao or Jiujun Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Qi, C., Cai, D. et al. TaC-modified LiFePO4/C composite as cathode material for high-performance lithium-ion batteries. Ionics 29, 2191–2198 (2023). https://doi.org/10.1007/s11581-023-04969-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04969-1

Keywords

Navigation