Skip to main content

Advertisement

Log in

Progress towards efficient phosphate-based materials for sodium-ion batteries in electrochemical energy storage

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Energy generation and storage technologies have gained a lot of interest for everyday applications. Durable and efficient energy storage systems are essential to keep up with the world’s ever-increasing energy demands. Sodium-ion batteries (NIBs) have been considеrеd a promising alternativе for the future gеnеration of electric storage devices owing to thеir similar еlectrochemistry to lithium-ion batteries (LIB) and thе low cost of sodium resourcеs. A wider variety of selections is available for cathodes, including phosphate framеwork materials that have attracted increasing interest for use as electrode materials that show promise for NIBs. Through this review, we study the latеst advancеs and progrеss in the еxploration of phosphate-basеd materials, particularly orthophosphates, fluorophosphates, pyrophosphates, and mixed-phosphates, which reprеsent a new class of positivе еlectrodе materials, after details about the description of their sodium storagе mechanisms and phosphatе and manganesе mineral sourcеs. Special attention is givеn to manganеse phosphatе-based matеrials, which show strong performance and great potential in еlectrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim H, Yoon G, Park I et al (2015) Anomalous Jahn–Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energ Environ Sci 8:3325–3335. https://doi.org/10.1039/C5EE01876E

    Article  CAS  Google Scholar 

  2. Li Y, Lu Y, Adelhelm P et al (2019) Intercalation chemistry of graphite: alkali metal ions and beyond. Chem Soc Rev 48:4655–4687. https://doi.org/10.1039/C9CS00162J

    Article  CAS  PubMed  Google Scholar 

  3. Li H (2019) Practical evaluation of li-ion batteries. Joule 3:911–914. https://doi.org/10.1016/J.JOULE.2019.03.028

    Article  CAS  Google Scholar 

  4. Hao R, Lan H, Kuang C et al (2018) Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon N Y 128:224–230. https://doi.org/10.1016/J.CARBON.2017.11.064

    Article  CAS  Google Scholar 

  5. Voronina N, Myung ST (2021, 2021) Recent advances in electrode materials with anion redox chemistry for sodium-ion batteries. Energy Mater Adv. https://doi.org/10.34133/2021/9819521

  6. Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 57:102–120. https://doi.org/10.1002/ANIE.201703772

    Article  CAS  Google Scholar 

  7. Yoshino A (2012) The birth of the lithium-ion battery. Angew Chem Int Ed 51:5798–5800. https://doi.org/10.1002/ANIE.201105006

    Article  CAS  Google Scholar 

  8. Li Y, Lu Y, Zhao C et al (2017) Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater 7:130–151. https://doi.org/10.1016/J.ENSM.2017.01.002

    Article  Google Scholar 

  9. Xie F, Xu Z, Guo Z, Titirici MM (2020) Hard carbons for sodium-ion batteries and beyond. Prog Energy 2:042002. https://doi.org/10.1088/2516-1083/ABA5F5

    Article  Google Scholar 

  10. Ren H, Li Y, Ni Q et al (2022) Unraveling anionic redox for sodium layered oxide cathodes: breakthroughs and perspectives. Adv Mater 34:2106171. https://doi.org/10.1002/ADMA.202106171

    Article  CAS  Google Scholar 

  11. Kanwade A, Gupta S, Kankane A et al (2022) Phosphate-based cathode materials to boost the electrochemical performance of sodium-ion batteries. Sustain Energy Fuels 6:3114–3147. https://doi.org/10.1039/D2SE00475E

    Article  CAS  Google Scholar 

  12. Ren H, Bai Y, Wang X et al (2019) High-capacity interstitial Mn-incorporated MnxFe3-xO4/graphene nanocomposite for sodium-ion battery anodes. ACS Appl Mater Interfaces 11:37812–37821. https://doi.org/10.1021/ACSAMI.9B14003/SUPPL_FILE/AM9B14003_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  13. Yang C, Xin S, Mai L, You Y (2021) Materials design for high-safety sodium-ion battery. Adv Energy Mater 11:2000974. https://doi.org/10.1002/AENM.202000974

    Article  CAS  Google Scholar 

  14. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614. https://doi.org/10.1039/C6CS00776G

    Article  CAS  PubMed  Google Scholar 

  15. Ni Q, Bai Y, Wu F et al (2017) Polyanion-type electrode materials for sodium-ion batteries. Adv Sci 4:1600275. https://doi.org/10.1002/ADVS.201600275

    Article  Google Scholar 

  16. Fang Y, Zhang J, Xiao L et al (2017) Phosphate framework electrode materials for sodium ion batteries. Adv Sci 4:1600392. https://doi.org/10.1002/ADVS.201600392

    Article  Google Scholar 

  17. Sapra SK, Pati J, Dwivedi PK et al (2021) A comprehensive review on recent advances of polyanionic cathode materials in Na-ion batteries for cost effective energy storage applications. Wiley Interdiscip Rev Energy Environ 10:e400. https://doi.org/10.1002/WENE.400

    Article  CAS  Google Scholar 

  18. Yuan Y, Wei Q, Yang S et al (2022) Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries. Energy Storage Mater 50:760–782. https://doi.org/10.1016/J.ENSM.2022.06.008

    Article  Google Scholar 

  19. Wang PF, You Y, Yin YX, Guo YG (2018) Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv Energy Mater 8:1701912. https://doi.org/10.1002/AENM.201701912

    Article  Google Scholar 

  20. Ren H, Zheng L, Li Y et al (2022) Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries. Nano Energy 103:107765. https://doi.org/10.1016/J.NANOEN.2022.107765

    Article  CAS  Google Scholar 

  21. Li H, Xu M, Zhang Z et al (2020) Engineering of polyanion type cathode materials for sodium-ion batteries: toward higher energy/power density. Adv Funct Mater 30:2000473. https://doi.org/10.1002/ADFM.202000473

    Article  CAS  Google Scholar 

  22. Senthilkumar B, Murugesan C, Sharma L et al (2019) An overview of mixed polyanionic cathode materials for sodium-ion batteries. Small Methods 3:1800253. https://doi.org/10.1002/SMTD.201800253

    Article  CAS  Google Scholar 

  23. Li S, Qiu J, Lai C et al (2015) Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 12:224–230. https://doi.org/10.1016/J.NANOEN.2014.12.032

    Article  CAS  Google Scholar 

  24. Loaiza LC, Monconduit L, Seznec V (2020) Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism. Small 16:1905260. https://doi.org/10.1002/SMLL.201905260

    Article  CAS  Google Scholar 

  25. Skundin AM, Kulova TL, Yaroslavtsev AB (2018) Sodium-ion batteries (a review). Russ J Electrochem 54:113–152. https://doi.org/10.1134/S1023193518020076

    Article  CAS  Google Scholar 

  26. Kulova TL, Fateev VN, Seregina EA, Grigoriev AS (2020) A brief review of post-lithium-ion batteries. Int J Electrochem Sci 15:7242–7259

    Article  Google Scholar 

  27. Wang LP, Yu L, Srinivasan M et al (2015) Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3:9353–9378. https://doi.org/10.1039/C4TA06467D

    Article  CAS  Google Scholar 

  28. Zeng X, Peng J, Guo Y et al (2020) Research Progress on Na3V2(PO4)3 Cathode material of sodium ion battery. Front Chem 8:635. https://doi.org/10.3389/FCHEM.2020.00635/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang T, Ran F (2021) Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery. Adv Funct Mater 31:2010041. https://doi.org/10.1002/ADFM.202010041

    Article  CAS  Google Scholar 

  30. Okoshi M, Yamada Y, Yamada A, Nakai H (2013) Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J Electrochem Soc 160:A2160–A2165. https://doi.org/10.1149/2.074311JES

    Article  CAS  Google Scholar 

  31. Han MH, Gonzalo E, Singh G, Rojo T (2014) A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energ Environ Sci 8:81–102. https://doi.org/10.1039/C4EE03192J

    Article  CAS  Google Scholar 

  32. Wang X, Tan G, Bai Y et al (2021) Multi-electron reaction materials for high-energy-density secondary batteries: current status and prospective. Electrochem Energy Rev 4:35–66. https://doi.org/10.1007/s41918-020-00073-4

    Article  CAS  Google Scholar 

  33. Xiang X, Zhang K, Chen J (2015) Recent advances and prospects of cathode materials for sodium-ion batteries. Adv Mater 27:5343–5364. https://doi.org/10.1002/ADMA.201501527

    Article  CAS  PubMed  Google Scholar 

  34. Chen R, Luo R, Huang Y et al (2016) Advanced high energy density secondary batteries with multi-electron reaction materials. Adv Sci 3:1600051. https://doi.org/10.1002/ADVS.201600051

    Article  Google Scholar 

  35. Nitta N, Yushin G (2014) High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles. Part Part Syst Charact 31:317–336. https://doi.org/10.1002/PPSC.201300231

    Article  CAS  Google Scholar 

  36. Kim Y, Ha KH, Oh SM, Lee KT (2014) High-capacity anode materials for sodium-ion batteries. Chem A Eur J 20:11980–11992. https://doi.org/10.1002/CHEM.201402511

    Article  CAS  Google Scholar 

  37. Jupp AR, Beijer S, Narain GC et al (2021) Phosphorus recovery and recycling – closing the loop. Chem Soc Rev 50:87–101. https://doi.org/10.1039/D0CS01150A

    Article  CAS  PubMed  Google Scholar 

  38. Aydin I, Imamoglu S, Aydin F et al (2009) Determination of mineral phosphate species in sedimentary phosphate rock in Mardin, SE Anatolia, Turkey by sequential extraction. Microchem J 91:63–69. https://doi.org/10.1016/J.MICROC.2008.08.001

    Article  CAS  Google Scholar 

  39. Jasinski SM (2017) Mineral commodity summaries: phosphate rock. US Geol Surv

    Google Scholar 

  40. Aubineau J, Parat F, Elghali A et al (2022) Highly variable content of fluorapatite-hosted CO32−in the Upper Cretaceous/Paleogene phosphorites (Morocco) and implications for paleodepositional conditions. Chem Geol 597:120818. https://doi.org/10.1016/J.CHEMGEO.2022.120818

    Article  CAS  Google Scholar 

  41. El Bamiki R, Séranne M, Chellaï EH et al (2020) The Moroccan High Atlas phosphate-rich sediments: unraveling the accumulation and differentiation processes. Sediment Geol 403:105655. https://doi.org/10.1016/J.SEDGEO.2020.105655

    Article  Google Scholar 

  42. Nguidi MA, Mouflih M, Benbouziane A et al (2021) Lithofacies analysis, sedimentary dynamics and genesis of Maastrichtian-Eocene phosphorites of BouCraa deposit (Southern Morocco). J African Earth Sci 177:104161. https://doi.org/10.1016/J.JAFREARSCI.2021.104161

    Article  CAS  Google Scholar 

  43. Kocsis L, Ulianov A, Mouflih M et al (2021) Geochemical investigation of the taphonomy, stratigraphy, and palaeoecology of the mammals from the Ouled Abdoun Basin (Paleocene-Eocene of Morocco). Palaeogeogr Palaeoclimatol Palaeoecol 577:110523. https://doi.org/10.1016/J.PALAEO.2021.110523

    Article  Google Scholar 

  44. El Bamiki R, Raji O, Ouabid M et al (2021) Phosphate Rocks: A Review of Sedimentary and Igneous Occurrences in Morocco. Minerals 11:1137. https://doi.org/10.3390/MIN11101137

    Article  Google Scholar 

  45. Bao X, Bin ZW, Zhang Q et al (2021) Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application. J Mater Sci Technol 71:109–128. https://doi.org/10.1016/J.JMST.2020.07.033

    Article  CAS  Google Scholar 

  46. Ohtake H, Tsuneda S (2018) Phosphorus recovery and recycling. Phosphorus Recover Recycl 1–526. https://doi.org/10.1007/978-981-10-8031-9/COVER

  47. Slootweg JC (2018) Sustainable phosphorus chemistry: a silylphosphide synthon for the generation of value-added phosphorus chemicals. Angew Chem Int Ed 57:6386–6388. https://doi.org/10.1002/ANIE.201803692

    Article  CAS  Google Scholar 

  48. Mullin JW (2001) Crystallization. Elsevier

    Google Scholar 

  49. Lissauer JJ, de Pater I (2013) Fundamental planetary science: physics, chemistry and habitability. Fundam Planet Sci. https://doi.org/10.1017/CBO9781139050463

  50. Survey USG (2021) Mineral commodity summaries 2021. Miner Commod Summ. https://doi.org/10.3133/MCS2021

  51. Li S, Yan J, Pei Q et al (2019) Addendum: Li, S., et al. Risk identification and evaluation of the long-term supply of manganese mines in China based on the VW-BGR method. Sustainability 2019, 11, 2683. Sustainability 11:7081. https://doi.org/10.3390/SU11247081

    Article  Google Scholar 

  52. Das AP, Ghosh S, Mohanty S, Sukla LB (2015) Advances in manganese pollution and its bioremediation:313–328. https://doi.org/10.1007/978-3-319-19018-1_16

  53. Zhang W, Cheng CY (2007) Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide. Hydrometallurgy 89:137–159. https://doi.org/10.1016/J.HYDROMET.2007.08.010

    Article  CAS  Google Scholar 

  54. Roy R, Agrawal DK, McKinstry HA (1989) Very low thermal expansion coefficient materials. Annu Rev Mater Sci 19:59–81. https://doi.org/10.1146/annurev.ms.19.080189.000423

    Article  CAS  Google Scholar 

  55. Fang Y, Xiao L, Ai X et al (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27:5895–5900. https://doi.org/10.1002/ADMA.201502018

    Article  CAS  PubMed  Google Scholar 

  56. Kretschmer K, Sun B, Zhang J et al (2017) 3D Interconnected carbon fiber network-enabled ultralong life Na3V2(PO4)3@carbon paper cathode for sodium-ion batteries. Small 13:1603318. https://doi.org/10.1002/SMLL.201603318

    Article  Google Scholar 

  57. Xiao L, Ji F, Zhang J et al (2023) Doping regulation in polyanionic compounds for advanced sodium-ion batteries. Small 19:2205732. https://doi.org/10.1002/SMLL.202205732

    Article  CAS  Google Scholar 

  58. Aragón MJ, Lavela P, Alcántara R, Tirado JL (2015) Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries. Electrochim Acta 180:824–830. https://doi.org/10.1016/J.ELECTACTA.2015.09.044

    Article  Google Scholar 

  59. Fang Y, Yu XY, Lou XW (David) (2019) Nanostructured electrode materials for advanced sodium-ion batteries. Matter 1:90–114. https://doi.org/10.1016/J.MATT.2019.05.007

  60. Cao Y, Xia X, Liu Y et al (2020) Scalable synthesizing nanospherical Na4Fe3(PO4)2(P2O7) growing on MCNTs as a high-performance cathode material for sodium-ion batteries. J Power Sources 461:228130. https://doi.org/10.1016/J.JPOWSOUR.2020.228130

    Article  CAS  Google Scholar 

  61. Guo S-P, Li J-C, Xu Q-T et al (2017) Recent achievements on polyanion-type compounds for sodium-ion batteries: syntheses, crystal chemistry and electrochemical performance. J Power Sources 361:285–299. https://doi.org/10.1016/j.jpowsour.2017.07.002

    Article  CAS  Google Scholar 

  62. Oh SM, Myung ST, Hassoun J et al (2012) Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem Commun 22:149–152. https://doi.org/10.1016/J.ELECOM.2012.06.014

    Article  CAS  Google Scholar 

  63. Kim J, Seo DH, Kim H et al (2015) Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energ Environ Sci 8:540–545. https://doi.org/10.1039/C4EE03215B

    Article  CAS  Google Scholar 

  64. Li C, Miao X, Chu W et al (2015) Retracted article: hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries. J Mater Chem A 3:8265–8271. https://doi.org/10.1039/C5TA01191D

    Article  CAS  Google Scholar 

  65. Tealdi C, Heath J, Islam MS (2016) Feeling the strain: enhancing ionic transport in olivine phosphate cathodes for Li- and Na-ion batteries through strain effects. J Mater Chem A 4:6998–7004. https://doi.org/10.1039/C5TA09418F

    Article  CAS  Google Scholar 

  66. Lee KT, Ramesh TN, Nan F et al (2011) Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem Mater 23:3593–3600. https://doi.org/10.1021/CM200450Y/SUPPL_FILE/CM200450Y_SI_001.PDF

    Article  CAS  Google Scholar 

  67. Ali G, Lee JH, Susanto D et al (2016) Polythiophene-wrapped olivine NaFePO4 as a cathode for Na-ion batteries. ACS Appl Mater Interfaces 8:15422–15429. https://doi.org/10.1021/ACSAMI.6B04014/SUPPL_FILE/AM6B04014_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  68. Fang Y, Xiao L, Qian J et al (2014) Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. Nano Lett 14:3539–3543. https://doi.org/10.1021/NL501152F/SUPPL_FILE/NL501152F_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  69. Fang Y, Zhang J, Zhong F et al (2021) Amorphous NaVOPO4 as a high-rate and ultrastable cathode material for sodium-ion batteries. CCS Chem 3:2428–2436. https://doi.org/10.31635/CCSCHEM.020.202000520

    Article  CAS  Google Scholar 

  70. Zhang L, Yu L, Li OL et al (2022) Facile synthesis of necessary amorphous structure FePO4nanospheres as superior sodium-ion battery cathodes. ACS Appl Energy Mater. https://doi.org/10.1021/ACSAEM.2C00336/SUPPL_FILE/AE2C00336_SI_001.PDF

  71. Goodenough JB, Hong H.-P, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Mater Res Bull 11:203–220. https://doi.org/10.1016/0025-5408(76)90077-5

  72. Hong H-P (1976) Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater Res Bull 11:173–182. https://doi.org/10.1016/0025-5408(76)90073-8

    Article  CAS  Google Scholar 

  73. Jian Z, Zhao L, Pan H et al (2012) Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun 14:86–89. https://doi.org/10.1016/J.ELECOM.2011.11.009

    Article  CAS  Google Scholar 

  74. Li G, Jiang D, Wang H et al (2014) Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries. J Power Sources 265:325–334. https://doi.org/10.1016/J.JPOWSOUR.2014.04.054

    Article  CAS  Google Scholar 

  75. Ni Q, Bai Y, Li Y et al (2018) 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small 14:1702864. https://doi.org/10.1002/SMLL.201702864

    Article  Google Scholar 

  76. Li X, Wang S, Tang X et al (2019) Porous Na3V2(PO4)3/C nanoplates for high-performance sodium storage. J Colloid Interface Sci 539:168–174. https://doi.org/10.1016/J.JCIS.2018.12.071

    Article  CAS  PubMed  Google Scholar 

  77. Yang L, Wang W, Hu M et al (2018) Ultrahigh rate binder-free Na3V2(PO4)3/carbon cathode for sodium-ion battery. J Energy Chem 27:1439–1445. https://doi.org/10.1016/J.JECHEM.2017.08.021

    Article  Google Scholar 

  78. Barker J, Saidi MY, Swoyer JL (2003) A sodium-ion cell based on the fluorophosphate compound NaVPO4F. Electrochem Solid St 6:A1. https://doi.org/10.1149/1.1523691/XML

    Article  CAS  Google Scholar 

  79. Lu Y, Zhang S, Li Y et al (2014) Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries. J Power Sources 247:770–777. https://doi.org/10.1016/J.JPOWSOUR.2013.09.018

    Article  CAS  Google Scholar 

  80. Jin T, Liu Y, Li Y et al (2017) Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life na-ion batteries. Adv Energy Mater 7:1700087. https://doi.org/10.1002/AENM.201700087

    Article  Google Scholar 

  81. Jin T, Li H, Zhu K et al (2020) Polyanion-type cathode materials for sodium-ion batteries. Chem Soc Rev 49:2342–2377. https://doi.org/10.1039/C9CS00846B

    Article  PubMed  Google Scholar 

  82. Zhang Q, Shen X, Zhou Q et al (2022) Large scale one-pot synthesis of monodispersed Na3(VOPO4)2F cathode for Na-ion batteries. Energy Mater Adv 2022:1–11. https://doi.org/10.34133/2022/9828020

    Article  CAS  Google Scholar 

  83. Niu Y, Zhang Y, Xu M (2019) A review on pyrophosphate framework cathode materials for sodium-ion batteries. J Mater Chem A 7:15006–15025. https://doi.org/10.1039/C9TA04274A

    Article  CAS  Google Scholar 

  84. Park CS, Kim H, Shakoor RA et al (2013) Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study. J Am Chem Soc 135:2787–2792. https://doi.org/10.1021/JA312044K/SUPPL_FILE/JA312044K_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  85. Clark JM, Barpanda P, Yamada A, Islam MS (2014) Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7: diffusion behaviour for high rate performance. J Mater Chem A 2:11807–11812. https://doi.org/10.1039/C4TA02383H

    Article  CAS  Google Scholar 

  86. Barpanda P, Ye T, Avdeev M et al (2013) A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries. J Mater Chem A 1:4194–4197. https://doi.org/10.1039/C3TA10210F

    Article  CAS  Google Scholar 

  87. Li H, Chen X, Jin T et al (2019) Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Storage Mater 16:383–390. https://doi.org/10.1016/J.ENSM.2018.06.013

    Article  Google Scholar 

  88. Longoni G, Wang JE, Jung YH et al (2016) The Na2FeP2O7-carbon nanotubes composite as high rate cathode material for sodium ion batteries. J Power Sources 302:61–69. https://doi.org/10.1016/J.JPOWSOUR.2015.10.033

    Article  CAS  Google Scholar 

  89. Deng C, Zhang S, Zhao B (2016) First exploration of ultrafine Na7V3(P2O7)4 as a high-potential cathode material for sodium-ion battery. Energy Storage Mater 4:71–78. https://doi.org/10.1016/J.ENSM.2016.03.001

    Article  Google Scholar 

  90. Kovrugin VM, Chotard JN, Fauth F, Masquelier C (2020) Na7V3(P2O7)4 as a high voltage electrode material for Na-ion batteries: crystal structure and mechanism of Na+ extraction/insertion by operando X-ray diffraction. J Mater Chem A 8:21110–21121. https://doi.org/10.1039/D0TA06230H

    Article  CAS  Google Scholar 

  91. Wood SM, Eames C, Kendrick E, Islam MS (2015) Sodium ion diffusion and voltage trends in phosphates Na4M3(PO4)2P2O7 (M = Fe, Mn, Co, Ni) for possible high-rate cathodes. J Phys Chem C 119:15935–15941. https://doi.org/10.1021/ACS.JPCC.5B04648/SUPPL_FILE/JP5B04648_SI_001.PDF

    Article  CAS  Google Scholar 

  92. Wu X, Zhong G, Tang Z, Yang Y (2016) Sol-gel synthesis of Na4Fe3(PO4)2(P2O7)/C nanocomposite for sodium ion batteries and new insights into microstructural evolution during sodium extraction. J Power Sources 327:666–674. https://doi.org/10.1016/J.JPOWSOUR.2016.07.061

    Article  CAS  Google Scholar 

  93. Nose M, Nakayama H, Nobuhara K et al (2013) Na4Co3(PO4)2P2O7: a novel storage material for sodium-ion batteries. J Power Sources 234:175–179. https://doi.org/10.1016/J.JPOWSOUR.2013.01.162

    Article  CAS  Google Scholar 

  94. Zhu Y, Xu Y, Liu Y et al (2012) Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5:780–787. https://doi.org/10.1039/C2NR32758A

    Article  PubMed  Google Scholar 

  95. Wang D, Wu Y, Lv J et al (2019) Carbon encapsulated maricite NaFePO4 nanoparticles as cathode material for sodium-ion batteries. Colloids Surf A Physicochem Eng Asp 583:123957. https://doi.org/10.1016/J.COLSURFA.2019.123957

    Article  CAS  Google Scholar 

  96. Saravanan K, Mason CW, Rudola A et al (2013) The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater 3:444–450. https://doi.org/10.1002/AENM.201200803

    Article  CAS  Google Scholar 

  97. Hu F, Jiang X (2020) A stable and superior performance of Na3V2(PO4)3/C nanocomposites as cathode for sodium-ion batteries. Inorg Chem Commun 115:107860. https://doi.org/10.1016/J.INOCHE.2020.107860

    Article  CAS  Google Scholar 

  98. Gover RKB, Bryan A, Burns P, Barker J (2006) The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ion 177:1495–1500. https://doi.org/10.1016/J.SSI.2006.07.028

    Article  CAS  Google Scholar 

  99. Chihara K, Kitajou A, Gocheva ID et al (2013) Cathode properties of Na3M2(PO4)2F3 [M = Ti, Fe, V] for sodium-ion batteries. J Power Sources 227:80–85. https://doi.org/10.1016/J.JPOWSOUR.2012.10.034

    Article  CAS  Google Scholar 

  100. Song W, Ji X, Wu Z et al (2014) Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries. J Power Sources 256:258–263. https://doi.org/10.1016/J.JPOWSOUR.2014.01.025

    Article  CAS  Google Scholar 

  101. Barpanda P, Lu J, Ye T et al (2013) A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries. RSC Adv 3:3857–3860. https://doi.org/10.1039/C3RA23026K

    Article  CAS  Google Scholar 

  102. Chen CY, Matsumoto K, Nohira T et al (2014) Pyrophosphate Na2FeP2O7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid. J Power Sources 246:783–787. https://doi.org/10.1016/J.JPOWSOUR.2013.08.027

    Article  CAS  Google Scholar 

  103. Kim H, Park CS, Choi JW, Jung Y (2016) Defect-controlled formation of triclinic Na2CoP2O7 for 4 V sodium-ion batteries. Angew Chem Int Ed 55:6662–6666. https://doi.org/10.1002/ANIE.201601022

    Article  CAS  Google Scholar 

  104. Kim H, Park I, Seo DH et al (2012) New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J Am Chem Soc 134:10369–10372. https://doi.org/10.1021/JA3038646/SUPPL_FILE/JA3038646_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  105. Kim H, Park I, Lee S et al (2013) Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P 2O7) in a Na rechargeable battery. Chem Mater 25:3614–3622. https://doi.org/10.1021/CM4013816/SUPPL_FILE/CM4013816_SI_001.PDF

    Article  CAS  Google Scholar 

  106. Kumar PR, Yahia HB, Belharouak I et al (2020) Electrochemical investigations of high-voltage Na4Ni3(PO4)2P2O7 cathode for sodium-ion batteries. J Solid State Electrochem 24:17–24. https://doi.org/10.1007/S10008-019-04448-6/METRICS

    Article  CAS  Google Scholar 

  107. Dima RS, Maleka PM, Maluta NE, Maphanga RR (2022) Structural, electronic, mechanical, and thermodynamic properties of na deintercalation from olivine NaMnPO4: first-principles study. Materials 15:5280. https://doi.org/10.3390/MA15155280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Priyanka V, Savithiri G, Rajkumar P et al (2020) Tweaking the electrochemical activity of maricite NaMnPO4 in sodium batteries using different manganese precursors via polyol method. J Solid State Chem 290:121551. https://doi.org/10.1016/J.JSSC.2020.121551

    Article  CAS  Google Scholar 

  109. Chowdhury A, Biswas S, Dhar A et al (2021) Stable Na-ion supercapacitor under non-ambient conditions using maricite-NaMnPO4 nanoparticles. J Power Sources 516:230679. https://doi.org/10.1016/J.JPOWSOUR.2021.230679

    Article  CAS  Google Scholar 

  110. Venkatachalam P, Ganesan S, Rengapillai S, Marimuthu S (2021) Gradual development of maricite NaMnPO4with the influence of diol chain length on the polyol process of surpassed sodium intercalation. Ind Eng Chem Res 60:5861–5868. https://doi.org/10.1021/ACS.IECR.1C00102/SUPPL_FILE/IE1C00102_SI_001.PDF

    Article  CAS  Google Scholar 

  111. Zhou W, Xue L, Lü X et al (2016) NaxMV(PO4)3 (M = Mn, Fe, Ni) Structure and properties for sodium extraction. Nano Lett 16:7836–7841. https://doi.org/10.1021/ACS.NANOLETT.6B04044/SUPPL_FILE/NL6B04044_SI_004.CIF

    Article  CAS  PubMed  Google Scholar 

  112. Wang J, Wang Y, Seo DH et al (2020) A high-energy NASICON-type cathode material for na-ion batteries. Adv Energy Mater 10:1903968. https://doi.org/10.1002/AENM.201903968

    Article  CAS  Google Scholar 

  113. Kim SW, Seo DH, Kim H et al (2012) A comparative study on Na2MnPO4F and Li2MnPO4F for rechargeable battery cathodes. Phys Chem Chem Phys 14:3299–3303. https://doi.org/10.1039/C2CP40082K

    Article  CAS  PubMed  Google Scholar 

  114. Recham N, Chotard J-N, Dupont L et al (2009) Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J Electrochem Soc 156:A993. https://doi.org/10.1149/1.3236480/XML

    Article  CAS  Google Scholar 

  115. Zhong YJ, Li JT, Wu ZG et al (2013) Synthesis of Na2MnPO4F/C with different carbon sources and their performances as cathode for lithium ion battery. Acta Phys - Chim Sin 29:1989–1997. https://doi.org/10.3866/PKU.WHXB201306181

    Article  CAS  Google Scholar 

  116. Huang Q, Hwu SJ (1998) Synthesis and characterization of three new layered phosphates, Na2MnP2O7, NaCsMnP2O7, and NaCsMn0.35Cu0.65P2O7. Inorg Chem 37:5869–5874. https://doi.org/10.1021/IC980616D/SUPPL_FILE/IC980616D_S.PDF

    Article  CAS  Google Scholar 

  117. Wu L, Hu Y, Zhang X et al (2018) Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries. J Power Sources 374:40–47. https://doi.org/10.1016/J.JPOWSOUR.2017.11.029

    Article  CAS  Google Scholar 

  118. Li H, Xu M, Gao C et al (2020) Highly efficient, fast and reversible multi-electron reaction of Na3MnTi(PO4)3 cathode for sodium-ion batteries. Energy Storage Mater 26:325–333. https://doi.org/10.1016/J.ENSM.2019.11.004

    Article  Google Scholar 

  119. Zheng Y, Liu J, Huang D et al (2022) Prepare and optimize NASICON-type Na4MnAl(PO4)3 as low cost cathode for sodium ion batteries. Surf Interf 32:102151. https://doi.org/10.1016/J.SURFIN.2022.102151

    Article  CAS  Google Scholar 

  120. Tang L, Liu X, Li Z et al (2019) CNT-decorated Na4Mn2Co(PO4)2P2O7 microspheres as a novel high-voltage cathode material for sodium-ion batteries. ACS Appl Mater Interfaces 11:27813–27822. https://doi.org/10.1021/ACSAMI.9B07595/SUPPL_FILE/AM9B07595_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  121. Nose M, Shiotani S, Nakayama H et al (2013) Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7: High potential and high capacity electrode material for sodium-ion batteries. Electrochem Commun 34:266–269. https://doi.org/10.1016/J.ELECOM.2013.07.004

    Article  CAS  Google Scholar 

  122. Kang J, Park H, Kim H et al (2020) Development of a new mixed-polyanion cathode with superior electrochemical performances for Na-ion batteries. ACS Sustain Chem Eng 8:163–171. https://doi.org/10.1021/ACSSUSCHEMENG.9B04944/SUPPL_FILE/SC9B04944_SI_001.PDF

    Article  CAS  Google Scholar 

  123. Chen H, Hao Q, Zivkovic O et al (2013) Sidorenkite (Na3MnPO4CO3): a new intercalation cathode material for Na-ion batteries. Chem Mater 25:2777–2786. https://doi.org/10.1021/CM400805Q/SUPPL_FILE/CM400805Q_SI_002.PDF

    Article  CAS  Google Scholar 

  124. Wang C, Sawicki M, Emani S et al (2015) Na3MnCO3PO4 – a high capacity, multi-electron transfer redox cathode material for sodium ion batteries. Electrochim Acta 161:322–328. https://doi.org/10.1016/J.ELECTACTA.2015.02.125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanaa El Aggadi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Aggadi, S., Ennouhi, M., Boutakiout, A. et al. Progress towards efficient phosphate-based materials for sodium-ion batteries in electrochemical energy storage. Ionics 29, 2099–2113 (2023). https://doi.org/10.1007/s11581-023-04936-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04936-w

Keywords

Navigation