Skip to main content
Log in

Improved lithium storage performance of block-like Sn/SnO2 powders wrapped in the hydrogel-derived carbon layer as composite anode materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Novel nitrogen–doped carbon (NC) coating encapsulating block-like Sn/SnO2 (Sn/SnO2@NC) composite powders are successfully synthesized via hydrothermal, sol–gel, and subsequent heat treatment processes, which are characterized by XRD, SEM, thermogravimetric, Raman, and XPS. The results indicate that the Sn/SnO2@NC-2 composite powders are uniformly distributed in the NC matrix in the presence of 7.000 g of acrylamide. Moreover, the Sn/SnO2@NC-2 composite powders deliver high initial discharge specific capacity of 1132 mAh g−1 and decent capacity of 471.4 mAh g−1 after 100 cycles at 100 mA g−1 when the composite powders are evaluated as anode materials for lithium-ion batteries. The improved electrochemical performance of Sn/SnO2@NC-2 is mainly ascribed to the NC coating that can relieve the volume expansion and provide multiple charge transfer channels for electrons to consolidate the structural stability and promote the electronic conductivity of the Sn/SnO2 anode materials, respectively. Therefore, the Sn/SnO2@NC-2 composite powders can be a promising and attractive anode material for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ding S, Cheng W, Zhang L, Du G, Hao X, Nie G, Xu B, Zhang M, Su Q, Serra CA (2021) Organic molecule confinement reaction for preparation of the Sn nanoparticles@graphene anode materials in Lithium-ion battery. J Colloid Interface Sci 589:308–317. https://doi.org/10.1016/j.jcis.2020.12.086

    Article  CAS  PubMed  Google Scholar 

  2. Ardhi REA, Liu G, Tran MX, Hudaya C, Kim JY, Yu H, Lee JK (2018) Self-relaxant superelastic matrix derived from C60 Incorporated Sn nanoparticles for ultra-high-performance Li-ion batteries. ACS Nano 12(6):5588–5604. https://doi.org/10.1021/acsnano.8b01345

    Article  CAS  PubMed  Google Scholar 

  3. Wang J, Nie Y, Miao C, Tan Y, Wen M, Xiao W (2021) Enhanced electrochemical properties of Ni-rich layered cathode materials via Mg2+ and Ti4+ co-doping for lithium-ion batteries. J Colloid Interface Sci 601:853–862. https://doi.org/10.1016/j.jcis.2021.05.167

    Article  CAS  PubMed  Google Scholar 

  4. Song D, Park J, Kim K, Lee LS, Seo JY, Oh Y-K, Kim Y-J, Ryou M-H, Lee YM, Lee K (2017) Recycling oil-extracted microalgal biomass residues into nano/micro hierarchical Sn/C composite anode materials for lithium-ion batteries. Electrochim Acta 250:59–67. https://doi.org/10.1016/j.electacta.2017.08.045

    Article  CAS  Google Scholar 

  5. Mou H, Chen S, Xiao W, Miao C, Li R, Xu G, Xin Y, Nie S (2021) Encapsulating homogenous ultra-fine SnO2/TiO2 particles into carbon nanofibers through electrospinning as high-performance anodes for lithium-ion batteries. Ceram Int 47(14):19945–19954. https://doi.org/10.1016/j.ceramint.2021.03.329

    Article  CAS  Google Scholar 

  6. Li R, Xiao W, Miao C, Fang R, Wang Z, Zhang M (2019) Sphere-like SnO2/TiO2 composites as high-performance anodes for lithium ion batteries. Ceram Int 45(10):13530–13535. https://doi.org/10.1016/j.ceramint.2019.04.059

    Article  CAS  Google Scholar 

  7. Shao F, Li H, Yao L, Xu S, Li G, Li B, Zou C, Yang Z, Su Y, Hu N, Zhang Y (2021) Binder-free, flexible, and self-standing non-woven fabric anodes based on graphene/Si hybrid fibers for high-performance Li-ion batteries. ACS Appl Mater Interfaces 13(23):27270–27277. https://doi.org/10.1021/acsami.1c04277

    Article  CAS  PubMed  Google Scholar 

  8. Nie S, Liu L, Liu J, Xie J, Zhang Y, Xia J, Yan H, Yuan Y, Wang X (2018) Nitrogen-doped TiO2-C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium-ion batteries. Nanomicro Lett 10(4):1–13. https://doi.org/10.1007/s40820-018-0225-1

    Article  CAS  Google Scholar 

  9. Nie Y, Xiao W, Miao C, Xu M, Wang C (2020) Effect of calcining oxygen pressure gradient on properties of LiNi0.8Co0.15Al0.05O2 cathode materials for lithium ion batteries. Electrochim Acta 334:135654. https://doi.org/10.1016/j.electacta.2020.135654

    Article  CAS  Google Scholar 

  10. Wang J, Liu C, Xu G, Miao C, Wen M, Xu M, Wang C, Xiao W (2022) Strengthened the structural stability of in-situ F-doping Ni-rich LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries. Chem Eng J 135537. https://doi.org/10.1016/j.cej.2022.135537

  11. Xiao W, Nie Y, Miao C, Wang J, Tan Y, Wen M (2021) Structural design of high-performance Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode materials enhanced by Mg2+ doping and Li3PO4 coating for lithium ion battery. J Colloid Interface Sci 607:1071–1082. https://doi.org/10.1016/j.jcis.2021.09.067

    Article  CAS  PubMed  Google Scholar 

  12. Wang Z, Kou Z, Miao C, Xiao W (2019) Improved performance all-solid-state electrolytes with high compacted density of monodispersed spherical Li1.3Al0.3Ti1.7(PO4)3 particles. Ceram Int 45(11):14469–14473. https://doi.org/10.1016/j.ceramint.2019.04.192

    Article  CAS  Google Scholar 

  13. Sui Y, Zhou J, Wang X, Wu L, Zhong S, Li Y (2021) Recent advances in black-phosphorus-based materials for electrochemical energy storage. Mate Today 42:117–136. https://doi.org/10.1016/j.mattod.2020.09.005

    Article  CAS  Google Scholar 

  14. Nie Y, Xiao W, Miao C, Fang R, Kou Z, Wang D, Xu M, Wang C (2020) Boosting the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode materials in-situ modified with Li1.3Al0.3Ti1.7(PO4)3 fast ion conductor for lithium-ion batteries. Electrochim Acta 353:136477. https://doi.org/10.1016/j.electacta.2020.136477

    Article  CAS  Google Scholar 

  15. Kou Z-Y, Lu Y, Miao C, Li J-Q, Liu C-J, Xiao W (2021) High-performance sandwiched hybrid solid electrolytes by coating polymer layers for all-solid-state lithium-ion batteries. Rare Met 40(11):3175–3184. https://doi.org/10.1007/s12598-020-01678-w

    Article  CAS  Google Scholar 

  16. Feng Y, Bai C, Wu K, Dong H, Ke J, Huang X, Xiong D, He M (2020) Fluorine-doped porous SnO2@C nanosheets as a high performance anode material for lithium ion batteries. J Alloy Compd 843. https://doi.org/10.1016/j.jallcom.2020.156085

  17. Jiang Y, Jiang J, Wang Z, Han M, Liu X, Yi J, Zhao B, Sun X, Zhang J (2020) Li4.4Sn encapsulated in hollow graphene spheres for stable Li metal anodes without dendrite formation for long cycle-life of lithium batteries. Nano Energy 70. https://doi.org/10.1016/j.nanoen.2020.104504

  18. Xu Y, Yuan T, Bian Z, Yang J, Zheng S (2020) Tuning particle and phase formation of Sn/carbon nanofibers composite towards stable lithium-ion storage. J Power Sources 453. https://doi.org/10.1016/j.jpowsour.2019.227467

  19. Zhang W, Zheng M, Li F, You Y, Jiang D, Yuan H, Ma L, Shen W (2021) SnOx/graphene anode material with multiple oxidation states for high-performance Li-ion batteries. Nanotechnology 32(19):195407. https://doi.org/10.1088/1361-6528/abe2c9

    Article  CAS  PubMed  Google Scholar 

  20. Mou H, Xin Y, Miao C, Nie S, Chen S, Xiao W (2021) Amorphous SnO2 nanoparticles embedded into a three-dimensional porous carbon matrix as high-performance anodes for lithium-ion batteries. Electrochim Acta 397:139286. https://doi.org/10.1016/j.electacta.2021.139286

    Article  CAS  Google Scholar 

  21. Li X, He X, Xu Y, Huang L, Li J, Sun S, Zhao J (2015) Superiority of the bi-phasic mixture of a tin-based alloy nanocomposite as the anode for lithium ion batteries. J Mater Chem A 3(7):3794–3800. https://doi.org/10.1039/c4ta06862a

    Article  CAS  Google Scholar 

  22. Liang S, Zhu X, Lian P, Yang W, Wang H (2011) Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries. J Solid State Chem 184(6):1400–1404. https://doi.org/10.1016/j.jssc.2011.03.052

    Article  CAS  Google Scholar 

  23. Fu Z, Li X, Xu G (2014) Novel electrospun SnO2@carbon nanofibers as high performance anodes for lithium-ion batteries. Cryst Res Technol 49(7):441–445. https://doi.org/10.1002/crat.201300211

    Article  CAS  Google Scholar 

  24. Zhang F, Wang Y, Guo W, Mao P, Rao S, Xiao P (2020) Yolk-shelled Sn@C@MnO hierarchical hybrid nanospheres for high performance lithium-ion batteries. J Alloy Compd 829. https://doi.org/10.1016/j.jallcom.2020.154579

  25. Zhang L, Zhao K, Sun C, Yu R, Zhuang Z, Li J, Xu W, Wang C, Xu W, Mai L (2020) Compact Sn/SnO2 microspheres with gradient composition for high volumetric lithium storage. Energy Storage Mater 25:376–381. https://doi.org/10.1016/j.ensm.2019.10.003

    Article  Google Scholar 

  26. Lee JH, Oh SH, Jeong SY, Kang YC, Cho JS (2018) Rattle-type porous Sn/C composite fibers with uniformly distributed nanovoids containing metallic Sn nanoparticles for high-performance anode materials in lithium-ion batteries. Nanoscale 10(45):21483–21491. https://doi.org/10.1039/c8nr06075d

    Article  CAS  PubMed  Google Scholar 

  27. Huang K, Xing Z, Wang L, Wu X, Zhao W, Qi X, Wang H, Ju Z (2018) Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J Mater Chem A 6(2):434–442. https://doi.org/10.1039/c7ta08171e

    Article  CAS  Google Scholar 

  28. Sivashanmugam A, Kumar TP, Renganathan NG, Gopukumar S, Wohlfahrt-Mehrens M, Garche J (2005) Electrochemical behavior of Sn/SnO2 mixtures for use as anode in lithium rechargeable batteries. J Power Sources 144(1):197–203. https://doi.org/10.1016/j.jpowsour.2004.12.047

    Article  CAS  Google Scholar 

  29. Mousavi M, Abolhassani R, Hosseini M, Akbarnejad E, Mojallal MH, Ghasemi S, Mohajerzadeh S, Sanaee Z (2021) Antimony doped SnO2nanowire@C core-shell structure as a high-performance anode material for lithium-ion battery. Nanotechnology 32(28). https://doi.org/10.1088/1361-6528/abf456

  30. Agubra VA, Zuniga L, Flores D, Campos H, Villarreal J, Alcoutlabi M (2017) A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium ion batteries. Electrochim Acta 224:608–621. https://doi.org/10.1016/j.electacta.2016.12.054

    Article  CAS  Google Scholar 

  31. Gao S, Wang N, Li S, Li D, Cui Z, Yue G, Liu J, Zhao X, Jiang L, Zhao Y (2020) A multi-wall Sn/SnO2 @carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew Chem Int Ed Engl 59(6):2465–2472. https://doi.org/10.1002/anie.201913170

    Article  CAS  PubMed  Google Scholar 

  32. Liu S, Pang F, Zhang Q, Guo R, Wang Z, Wang Y, Zhang W, Ou J (2018) Stable nanoporous Sn/SnO2 composites for efficient electroreduction of CO2 to formate over wide potential range. Appl Mater Today 13:135–143. https://doi.org/10.1016/j.apmt.2018.08.014

    Article  Google Scholar 

  33. Jiang W, Wang W, Liu L, Wang H, Xu Z, Li F, Fu H, Lv H, Chen L, Kang Y (2019) Sandwich-like Sn/SnO2@Graphene anode composite assembled by fortissimo penetration of γ-ray and interlamellar limitation of graphene oxide. J Alloy Compd 779:856–862. https://doi.org/10.1016/j.jallcom.2018.11.296

    Article  CAS  Google Scholar 

  34. Sun Q, Kong X, Liu W, Xu B, Hu P, Gao Z, Huang Y (2020) Flakes-stacked Sn/SnO2/C composite as highly stable anode material for lithium-ion batteries. J Alloy Compd 831. https://doi.org/10.1016/j.jallcom.2020.154677

  35. Li R, Nie S, Miao C, Xin Y, Mou H, Xu G, Xiao W (2022) Heterostructural Sn/SnO2 microcube powders coated by a nitrogen-doped carbon layer as good-performance anode materials for lithium ion batteries. J Colloid Interface Sci 606:1042–1054. https://doi.org/10.1016/j.jcis.2021.08.112

    Article  CAS  PubMed  Google Scholar 

  36. Uchiyama H, Nakanishi S, Kozuka H (2014) Hydrothermal synthesis of nanostructured SnO particles through crystal growth in the presence of gelatin. J Solid State Chem 217:87–91. https://doi.org/10.1016/j.jssc.2014.05.023

    Article  CAS  Google Scholar 

  37. Kim Y-J, Park M-S, Sohn H-J, Lee H (2011) Electrochemical behaviors of SnO and Sn anodes for lithium rechargeable batteries. J Alloy Compd 509(12):4367–4371. https://doi.org/10.1016/j.jallcom.2011.01.061

    Article  CAS  Google Scholar 

  38. Hassan FM, Chen Z, Yu A, Chen Z, Xiao X (2013) Sn/SnO2 embedded in mesoporous carbon nanocomposites as negative electrode for lithium ion batteries. Electrochim Acta 87:844–852. https://doi.org/10.1016/j.electacta.2012.09.015

    Article  CAS  Google Scholar 

  39. Wen X, Xiang K, Zhu Y, Xiao L, Liao H, Chen W, Chen X, Chen H (2020) 3D hierarchical nitrogen-doped graphene/CNTs microspheres as a sulfur host for high-performance lithium-sulfur batteries. J Alloy Compd 815:152350. https://doi.org/10.1016/j.jallcom.2019.152350

    Article  CAS  Google Scholar 

  40. Wang G, Xu Y, Yue H, Jin R, Gao S (2020) NiMoS4 nanocrystals anchored on N-doped carbon nanosheets as anode for high performance lithium ion batteries. J Colloid Interface Sci 561:854–860. https://doi.org/10.1016/j.jcis.2019.11.068

    Article  CAS  PubMed  Google Scholar 

  41. Dong G, Fang Y, Liao S, Zhu K, Yan J, Ye K, Wang G, Cao D (2021) 3D tremella-like nitrogen-doped carbon encapsulated few-layer MoS2 for lithium-ion batteries. J Colloid Interface Sci 601:594–603. https://doi.org/10.1016/j.jcis.2021.05.150

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 51874046), the Outstanding Youth Foundation of Hubei Province (No. 2020CFA090), and the Hunan Provincial Natural Science Foundation of China (No. 2021JJ50138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xiao.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Nie, S., Chen, K. et al. Improved lithium storage performance of block-like Sn/SnO2 powders wrapped in the hydrogel-derived carbon layer as composite anode materials. Ionics 28, 4599–4610 (2022). https://doi.org/10.1007/s11581-022-04697-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04697-y

Keywords

Navigation