Skip to main content

Advertisement

Log in

NiS2 nanoparticles anchored on MXene conductive frameworks with enhanced lithium and sodium storage properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The restricted capacity of commercial graphite anode materials will make it difficult to meet the increased demand for battery energy density. Because of their high theoretical capacity, metal sulfides are particularly useful as anodes for lithium and sodium-ion batteries. To prepare NiS2/Ti3C2Tx composites, a solution thermal approach is combined with an in situ vulcanization process, in which NiS2 nanoparticles are homogeneously attached on Ti3C2Tx nanosheets. Ti3C2Tx nanosheets serve as a strong conductive framework, allowing for excellent ionic and electrical conductivity while also limiting volume expansion during cycling. On the other hand, NiS2 nanoparticles have a large theoretical capacity and prevent Ti3C2Tx nanosheets from stacking again. The NiS2/Ti3C2Tx composite synergistic impact can significantly increase the electrochemical performance of the anode. After 200 cycles at 0.2 A g−1, it has a capacity of 796 mAh g−1 in lithium-ion batteries, which is 5 times higher than the primitive Ti3C2Tx electrode. The Li+ storage mechanism of NiS2/Ti3C2Tx is proved to be dominated by capacitive behavior. In sodium-ion batteries, NiS2/Ti3C2Tx has a good cycling performance, with over 800 cycles at 1 A g−1 and a reasonable capacity of 179 mAh g−1. Because of its excellent electrochemical properties, NiS2/Ti3C2Tx is a popular anode material for lithium/sodium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    CAS  PubMed  Google Scholar 

  2. Chen S, Shen L, Van Aken PA, Maier J, Yu Y (2017) Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv Mater 29:1605650

    Article  CAS  Google Scholar 

  3. Yu M, Li J, Ning X (2021) Improving electrochemical performance of LiMn0.5Fe0.5PO4 cathode by hybrid coating of Li3VO4 and carbon. Electrochim Acta 368:137597

    Article  CAS  Google Scholar 

  4. Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17:110–121

    Article  CAS  Google Scholar 

  5. Park M, Cha H, Lee Y, Hong J, Kim SY, Cho J (2017) Postpatterned electrodes for flexible node-type lithium-ion batteries. Adv Mater 29:1605773

    Article  CAS  Google Scholar 

  6. Wang S, Xiao C, Xing Y, Xu H, Zhang S (2015) Formation of a stable carbon framework in a MnO yolk-shell sphere to achieve exceptional performance for a Li-ion battery anode. J Mater Chem A 3:15591–15597

    Article  CAS  Google Scholar 

  7. Han F, Zhang C, Sun B, Tang W, Yang J, Li X (2017) Dual-carbon phase-protective cobalt sulfide nanoparticles with cable-type and mesoporous nanostructure for enhanced cycling stability in sodium and lithium-ion batteries. Carbon 118:731–742

    Article  CAS  Google Scholar 

  8. Li M, Xiao X, Fan X, Huang X, Liu Y, Chen L (2017) Carbon coated sodium-titanate nanotube as an advanced intercalation anode material for sodium-ion batteries. J Alloy Compd 712:365–372

    Article  CAS  Google Scholar 

  9. Hasa I, Dou X, Buchholz D, Shao-Horn Y, Hassoun J, Passerini S, Scrosati B (2016) A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. J Power Sources 310:26–31

    Article  CAS  Google Scholar 

  10. Hou L, Cui R, Jiang X, Wang D, Jiang Y, Deng S, Guo Y, Gao F (2020) Unique amorphous manganese oxide/rGO anodes for lithium-ion batteries with high capacity and excellent stability. Ionics 26:4339–4349

    Article  CAS  Google Scholar 

  11. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium-ion batteries. Nano Today 7:414–429

    Article  CAS  Google Scholar 

  12. Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ionics, Diff React 28–30:1172–1175

    Article  Google Scholar 

  13. Zhu Y, Nie P, Shen L, Dong S, Sheng Q, Li H, Luo H, Zhang X (2015) High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium-ion batteries. Nanoscale 7:3309–3315

    Article  CAS  PubMed  Google Scholar 

  14. Zheng Y, Zhou T, Zhang C, Mao J, Liu H, Guo Z (2016) Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew Chem Int Edit 55:3408–3413

    Article  CAS  Google Scholar 

  15. Chen Q, Chen W, Ye J, Wang Z, Lee JY (2015) L-Cysteine-assisted hydrothermal synthesis of nickel disulfide/graphene composite with enhanced electrochemical performance for reversible lithium storage. J Power Sources 294:51–58

    Article  CAS  Google Scholar 

  16. Luo J, Lu X, Matios E, Wang C, Wang H, Zhang Y, Hu X, Li W (2020) Tunable MXene-derived 1D/2D hybrid nanoarchitectures as a stable matrix for dendrite-free and ultrahigh capacity sodium metal anode. Nano Lett 20:7700–7708

    Article  CAS  PubMed  Google Scholar 

  17. Luo JM, Matios E, Wang H, Tao X, Li W (2020) Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. Infomat 2:1057–1076

    Article  CAS  Google Scholar 

  18. Gogotsi Y, Anasori B (2019) The rise of MXenes. ACS Nano 13:8491–8494

    Article  CAS  PubMed  Google Scholar 

  19. Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Sci 341:1502–1505

    Article  CAS  Google Scholar 

  20. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098

    Article  CAS  Google Scholar 

  21. Xiao Z, Yang Z, Li Z, Li P, Wang R (2019) Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano 13:3404–3412

    Article  CAS  PubMed  Google Scholar 

  22. Fang Y, Zhang Y, Zhu K, Lian R, Gao Y, Yin J, Ye K, Cheng K, Yan J, Wang G, Wei Y, Cao D (2019) Lithiophilic three-dimensional porous Ti3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 13:14319–14328

    Article  CAS  PubMed  Google Scholar 

  23. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6:1322–1331

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Zhang Z, Yan X, Zhang S, Wu Z, Zhuang Z, Han W (2020) Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in Li-S battery. Nano-Micro Lett 12:4

    Article  CAS  Google Scholar 

  25. Nan J, Guo X, Xiao J, Li X, Chen W, Wu W, Liu H, Wang Y, Wu M, Wang G (2021) Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17:1902085

    Article  CAS  Google Scholar 

  26. Zhao J, Wen J, Xiao J, Ma X, Gao J, Bai L, Gao H, Zhang X, Zhang Z (2021) Nb2CTx MXene: high capacity and ultra-long cycle capability for lithium-ion battery by regulation of functional groups. J Energy Chem 53:387–395

    Article  Google Scholar 

  27. Zheng M, Guo R, Liu Z, Wang B, Meng L, Li F, Li T, Luo Y (2018) MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries. J Alloy Compd 735:1262–1270

    Article  CAS  Google Scholar 

  28. Xue C, He Y, Liu Y, Saha P, Cheng Q (2019) Controlled synthesis of alkalized Ti3C2 MXene-supported β-FeOOH nanoparticles as anodes for lithium-ion batteries. Ionics 25:3069–3077

    Article  CAS  Google Scholar 

  29. Luo J, Zheng J, Nai J, Jin C, Yuan H, Sheng O, Liu Y, Fang R, Zhang W, Huang H, Gan Y, Xia Y, Liang C, Zhang J, Li W, Tao X (2019) Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv Func Mater 29:1808107

    Article  CAS  Google Scholar 

  30. Luo J, Wang C, Wang H, Hu X, Matios E, Lu X, Zhang W, Tao X, Li W (2019) Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv Func Mater 29:1805946

    Article  CAS  Google Scholar 

  31. Luo J, Fang C, Jin C, Yuan H, Sheng O, Fang R, Zhang W, Huang H, Gan Y, Xia Y, Liang C, Zhang J, Li W, Tao X (2018) Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J Mater Chem A 6:7794–7806

    Article  CAS  Google Scholar 

  32. Liu Y, Zhang M, Guo J (2022) High-performance lithium-sulfur battery based on carbonized 3D MXene/T-CNF aerogel composite membrane. Ionics 28:647–655

    Article  CAS  Google Scholar 

  33. Zhang T, Pan L, Tang H, Du F, Guo Y, Qiu T, Yang J (2017) Synthesis of two-dimensional Ti3C2Tx MXene using HCl plus LiF etchant: enhanced exfoliation and delamination. J Alloy Compd 695:818–826

    Article  CAS  Google Scholar 

  34. Chen Q, Sun S, Zhai T, Yang M, Zhao X, Xia H (2018) Yolk-shell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery. Adv Energy Mater 8:1800054

    Article  CAS  Google Scholar 

  35. Zhao W, Ci S, Hu X, Jun C, Wen Z (2019) Highly dispersed ultrasmall NiS2 nanoparticles in porous carbon nanofiber anodes for sodium-ion batteries. Nanoscale 11:4688–4695

    Article  CAS  PubMed  Google Scholar 

  36. Xu YG, Liu J, Kong L (2020) Reduced graphene oxide decorated amorphous NiS2 nanosheets as high-performance anode materials for enhanced sodium-ion hybrid capacitors. Ionics 27:315–3325

    Google Scholar 

  37. Fan K, Zou H, Lu Y, Chen H, Li F, Liu J, Sun L, Tong L, Toney MF, Sui M, Yu J (2018) Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 12:12369–12379

    Article  CAS  PubMed  Google Scholar 

  38. Liu Z, Shang X, Dong B, Chai Y (2018) Triple Ni-Co-Mo metal sulfides with one-dimensional and hierarchical nanostructures towards highly efficient hydrogen evolution reaction. J Catal 361:204–213

    Article  CAS  Google Scholar 

  39. Li Y, Yin K, Wang L, Lu X, Zhang Y, Liu Y, Yan D, Song Y, Luo S (2018) Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction. Appl Catal B-Environ 239:537–544

    Article  CAS  Google Scholar 

  40. Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum MW (2016) X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci 362:406–417

    Article  CAS  Google Scholar 

  41. Li C, Xue Z, Qin J, Sawangphruk M, Yu P, Zhang X, Liu R (2020) Synthesis of nickel hydroxide/delaminated-Ti3C2 MXene nanosheets as promising anode material for high performance lithium ion battery. J Alloy Compd 842:155812

    Article  CAS  Google Scholar 

  42. Sun W, Wang Y (2014) Graphene-based nanocomposite anodes for lithium-ion batteries. Nanoscale 6:11528–11552

    Article  CAS  PubMed  Google Scholar 

  43. Wen X, Wei X, Yang L, Shen P (2015) Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. J Mater Chem A 3:2090–2096

    Article  CAS  Google Scholar 

  44. Du Y, Zhu X, Zhou X, Hu L, Dai Z, Bao J (2015) Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage. J Mater Chem A 3:6787–6791

    Article  CAS  Google Scholar 

  45. Mahmood N, Zhang C, Hou Y (2013) Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries. Small 9:1321–1328

    Article  CAS  PubMed  Google Scholar 

  46. Chen R, Zhao T, Lu J, Wu F, Li L, Chen J, Tan G, Ye Y, Amine K (2013) Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett 13:4642–4649

    Article  CAS  PubMed  Google Scholar 

  47. Gao X, Li J, Guan D, Yuan C (2014) A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic efficiency. ACS Appl Mater Inter 6:4154–4159

    Article  CAS  Google Scholar 

  48. Liu R, Cao W, Han D, Mo Y, Zeng H, Yang H, Li W (2019) Nitrogen-doped Nb2CTx MXene as anode materials for lithium ion batteries. J Alloy Compd 793:505–511

    Article  CAS  Google Scholar 

  49. Wu C, Kopoid P, Van Aken PA, Maier J, Yu Y (2017) High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Adv Mater 29:1604015

    Article  CAS  Google Scholar 

  50. Li B, Ye R, Wang Q, Liu X, Fang P, Hu J (2021) Facile synthesis of coral-like Pt nanoparticles/MXene (Ti3C2Tx) with efficient hydrogen evolution reaction activity. Ionics 27:1221–1231

    Article  CAS  Google Scholar 

  51. Wu R, Wang DP, Rui X, Liu B, Zhou K, Law AWK, Yan Q, Wei J, Chen Z (2015) In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv Mater 27:3038–3044

    Article  CAS  PubMed  Google Scholar 

  52. Du Y, Yin Z, Zhu J, Huang X, Wu X, Zeng Z, Yan Q, Zhang H (2012) A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat Commun 3:1177

    Article  PubMed  Google Scholar 

  53. Lee JB, Choi GH, Yoo PJ (2021) Oxidized-co-crumpled multiscale porous architectures of MXene for high performance supercapacitors. J Alloy Compd 887:61304

    Article  CAS  Google Scholar 

  54. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruna HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522

    Article  CAS  PubMed  Google Scholar 

  55. Yu M, Sun L, Ning X (2021) Controllable synthesis of carbon-coated Fe3O4 nanorings with high Li/Na storage performance. J Alloy Compd 878:160359

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the support from the National Natural Science Foundation of China (NSFC) (Grant Nos. 51471124, U1766216); the National Key R&D Program of China (2018YFB0905600); the Natural Science Foundation of Shaanxi Province, China (2019JM-189, 2020JM-218); and the Fundamental Research Funds for the Central Universities (CHD300102311405), HPC platform of Xi’an Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. He or P. Zhao.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 405 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W.X., Zhang, J.H., Zhang, Y.K. et al. NiS2 nanoparticles anchored on MXene conductive frameworks with enhanced lithium and sodium storage properties. Ionics 28, 4621–4629 (2022). https://doi.org/10.1007/s11581-022-04668-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04668-3

Keywords

Navigation