Skip to main content

Advertisement

Log in

MOF-derived porous NiCo2S4 nanocrystals embedded in nitrogen-doped carbon nanorods as lithium battery anodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Binary metal sulfides have been widely studied as anode materials for lithium-ion batteries (LIBs) due to their abundant charge-storage oxidation reduction states. However, their poor electrochemical stability due to their volume expansion and poor electrical conductivity has hindered their commercial application. Here, we report a MOFs (Metal–organic frameworks)-derived strategy for the synthesis of stable hybrid structures with NiCo2S4 nanocrystals in nitrogen-doped carbon nanorods (represented as NiCo2S4@N–C). NiCo2S4@N–C with many interconnecting voids to reduce volume expansion and increase the contact area between the material and the electrolyte. In addition, the doping of nitrogen atoms in the carbon matrix can improve the conductivity of the electrode material and increase the active site, thus changing the electrochemical performance of the electrode material. As expected, NiCo2S4@N–C still has a large reversible capacity of 1543 mAh g−1 after 100 cycles compared to CoS2@N–C and NiS@N–C at 100 mA g−1 current densities, and even at a large current density of 1 A g−1, the capacity still retains 893 mAh g−1 after 1000 cycles, showing enhanced lithium storage performance, indicating its potential as anode material for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. B. Li, Y.F. Wang, N. Jiang, L. An, J. Song, Y.X. Zuo, F.H. Ning, H.F. Shang, D.G. Xia, Nano Energy 72, 104727 (2020)

    Article  CAS  Google Scholar 

  2. C.L. Wei, Y. Tao, H.F. Fei, Y.L. An, Y. Tian, J.K. Feng, Y.T. Qian, Energy Storage Mater. 30, 206–227 (2020)

    Article  Google Scholar 

  3. Q. Yang, F.N. Mo, Z.X. Liu, L.T. Ma, X.L. Li, D.L. Fang, S.M. Chen, S.J. Zhang, C.Y. Zhi, Adv. Mater. 31, 1901521 (2019)

    Article  Google Scholar 

  4. M.C. Lin, M. Gong, B. Lu, Y.P. Wu, D.Y. Wang, M.Y. Guan, M. Angell, C.X. Chen, J. Yang, B.J. Hwang, H.J. Dai, Nature 520, 324–328 (2015)

    Article  CAS  Google Scholar 

  5. X. Xiao, L.L. Zou, H. Pang, Q. Xu, Chem. Soc. Rev. 49, 301–331 (2020)

    Article  CAS  Google Scholar 

  6. K.N. Chu, Z.Q. Li, S.K. Xu, G. Yao, Y. Xu, P. Niu, F.C. Zheng, J. Alloys Compd. 854, 157264 (2021)

    Article  CAS  Google Scholar 

  7. D.D. Yang, M. Zhao, R.D. Zhang, Y. Zhang, C.C. Yang, Q. Jiang, Nanoscale Adv. 2, 512–519 (2020)

    Article  CAS  Google Scholar 

  8. J.Q. Yu, D.P. Cai, J.H. Si, H.B. Zhan, Q.T. Wang, J. Mater. Chem. A 10, 4100–4109 (2022)

    Article  CAS  Google Scholar 

  9. B. Liu, S.Z. Huang, D.Z. Kong, J.P. Hu, H.Y. Yang, J. Mater. Chem. A 7, 7604–7613 (2019)

    Article  CAS  Google Scholar 

  10. Q. Zhang, G. Peng, J.P. Mwizerwa, H.L. Wan, L.T. Cai, X.X. Xu, X.Y. Yao, J. Mater. Chem. A 6, 12098–12105 (2018)

    Article  CAS  Google Scholar 

  11. Q.Q. Yao, J.S. Zhang, J.X. Li, W.J. Huang, K. Hou, Y. Zhao, L.H. Guan, J. Mater. Chem. A 7, 18932–18939 (2019)

    Article  CAS  Google Scholar 

  12. J.K. Wang, D.X. Cao, G.D. Yang, Y.D. Yang, H.K. Wang, J. Solid State Chem. 21, 3047–3055 (2017)

    CAS  Google Scholar 

  13. Z.W. Zhang, Z.Q. Lia, L.W. Yin, New J. Chem. 42, 1467–1476 (2018)

    Article  CAS  Google Scholar 

  14. J.M. Chen, Y. Cheng, Q.B. Zhang, C. Luo, H.Y. Li, Y. Wu, H.H. Zhang, X. Wang, H.D. Liu, X. He, J.J. Han, D.L. Peng, M.L. Liu, M.S. Wang, Adv. Funct. Mater. 31(1), 2007158 (2020)

    Article  Google Scholar 

  15. F. Xu, Y.X. Zhai, E. Zhang, Q.H. Liu, G.G. Jiang, X.S. Xu, Y.Q. Qiu, X.M. Liu, H.Q. Wang, S. Kaskel, Chem. Int. Ed. 59, 19460–19467 (2020)

    Article  CAS  Google Scholar 

  16. Y. Xu, C.L. Zhang, M. Zhou, Q. Fu, C.X. Zhao, M.H. Wu, Y. Lei, Nat. Commun. 9, 1720 (2018)

    Article  Google Scholar 

  17. X.J. Wei, Y.B. Zhang, B.K. Zhang, Z. Lin, X.P. Wang, P. Hu, S.L. Li, X. Tan, X.Y. Cai, W. Yang, L.Q. Mai, Nano Energy 64, 103899 (2019)

    Article  CAS  Google Scholar 

  18. D.P. Qiu, J.Y. Guan, M. Li, C.H. Kang, J.Y. Wei, Y. Li, Z. Xie, F. Wang, R. Yang, Adv. Funct. Mater. 29, 1903496 (2019)

    Article  Google Scholar 

  19. F.C. Zheng, M.N. He, Y. Yang, Q.W. Chen, Nanoscale 7, 3410–3417 (2015)

    Article  CAS  Google Scholar 

  20. W.L. Zhang, J. Yin, M.L. Sun, W.X. Wang, C.L. Chen, M. Altunkaya, A.H. Emwas, Y. Han, U. Schwingenschlögl, H.N. Alshareef, Adv. Mater. 32(25), 2000732 (2020)

    Article  CAS  Google Scholar 

  21. J.H. Lin, Y.H. Wang, X.H. Zheng, H.Y. Liang, H.A. Jia, J.L. Qi, J. Cao, J.C. Tu, W.D. Fei, J.C. Feng, Dalton Trans. 47, 8771–8778 (2018)

    Article  CAS  Google Scholar 

  22. K.N. Chu, Z.Q. Li, S.K. Xu, G. Yao, Y. Xu, P. Niu, F.C. Zheng, Dalton Trans. 49, 10808–10815 (2020)

    Article  CAS  Google Scholar 

  23. W.X. Yang, J.H. Zhou, S. Wang, Z.C. Wang, F. Lv, W.S. Zhang, W.Y. Zhang, Q. Sun, S.J. Guo, ACS Energy Lett. 5, 1653–1661 (2020)

    Article  CAS  Google Scholar 

  24. X.Y. Wu, S.M. Li, B. Wang, J.H. Liu, M. Yua, Phys. Chem. Chem. Phys. 18, 4505–4512 (2016)

    Article  CAS  Google Scholar 

  25. W.X. Zhao, X. Hu, S.Q. Ci, J.X. Chen, G.X. Wang, Q.H. Xu and Z.H. Wen, (2019) Small 190454

  26. H.X. Han, X.Y. Chen, J.F. Qian, F.P. Zhong, X.M. Feng, W.H. Chen, X.P. Ai, H.X. Yang, Y.L. Cao, Nanoscale 11, 21999–22005 (2019)

    Article  CAS  Google Scholar 

  27. F.C. Zheng, Y. Yang, Q.W. Chen, Nat. Commun. 5, 5261 (2014)

    Article  CAS  Google Scholar 

  28. Y. Song, Z.L. Chen, Y.M. Li, Q.C. Wang, F. Fang, Y.N. Zhou, L.F. Hu, D.L. Sun, J. Mater. Chem. A 5, 9022–9031 (2017)

    Article  CAS  Google Scholar 

  29. P.F. Liu, Y.Y. Liu, J. Li, M.R. Wang, H.T. Cui, Nanoscale 12, 22330–22339 (2020)

    Article  CAS  Google Scholar 

  30. J.C. Zhou, Y.C. Wang, J.J. Zhou, K. Chen, L. Han, Dalton Trans. 50, 15129–15139 (2021)

    Article  CAS  Google Scholar 

  31. T. Li, Y.P. Xia, H. Wu, D.H. Zhang, F. Xu, Nanoscale 14, 10226–10235 (2022)

    Article  CAS  Google Scholar 

  32. F.C. Zheng, K.N. Chu, Y. Yang, Z.Q. Li, L.Z. Wei, Y. Xu, G. Yao, Q.W. Chen, A.C.S. Appl, Mater. Inter. 14, 9212–9221 (2022)

    Article  CAS  Google Scholar 

  33. Y. Xu, K.N. Chu, Z.Q. Li, S.K. Xu, G. Yao, P. Niu, F.C. Zheng, Dalton Trans. 49, 11597 (2020)

    Article  CAS  Google Scholar 

  34. R.C. Jin, D.M. Liu, C.P. Liu, G. Liu, RSC Adv. 5, 84711–84717 (2015)

    Article  CAS  Google Scholar 

  35. X.Y. Wu, S.M. Li, B. Wang, J.H. Liu, M. Yu, Chem. Commun. 57, 1002–1005 (2021)

    Article  CAS  Google Scholar 

  36. D.X. Yuan, G. Huang, D.M. Yin, X.X. Wang, C.L. Wang, L.M. Wang, A.C.S. Appl, Mater. Inter. 9, 18178–18186 (2017)

    Article  CAS  Google Scholar 

  37. D.X. Bai, F. Wang, J.M. Lv, F.Z. Zhang, S.L. Xu, A.C.S. Appl, Mater. Inter. 8, 32853–32861 (2016)

    Article  CAS  Google Scholar 

  38. Y. Xu, C.L. Wang, P. Niu, Z.Q. Li, L.Z. Wei, G. Yao, F.C. Zheng, Q.W. Chen, J. Mater. Chem. A 9, 16150–16159 (2021)

    Article  CAS  Google Scholar 

  39. M.J. Shao, C.X. Li, T. Li, H. Zhao, W.Q. Yu, R.T. Wang, J.Z. and L.W. Yin, Adv. Funct. Mater. 30, 2006561 (2020)

    Article  CAS  Google Scholar 

  40. K.N. Chu, X.J. Zhang, Y. Yang, Z.Q. Li, L.Z. Wei, G. Yao, F.C. Zheng, Q.W. Chen, Carbon 184, 277–286 (2021)

    Article  CAS  Google Scholar 

  41. H.H. Kim, K.H. Kim, J. Lee, S.H. Hong, A.C.S. Sustain, Chem. Eng. 9, 9680–9688 (2021)

    CAS  Google Scholar 

  42. X.X. Wang, R.S. Zhou, C.M. Zhang, S.B. Xi, M.W.M. Jones, T. Tesfamichael, A.J. Du, K. Gui, K. Ostrikov, H.X. Wang, J. Mater. Chem. A 8, 9278–9291 (2020)

    Article  CAS  Google Scholar 

  43. X.J. Chen, D. Chen, X.Y. Guo, R.M. Wang, H.Z. Zhang, A.C.S. Appl, Mater. Inter. 9, 18774–18781 (2017)

    Article  CAS  Google Scholar 

  44. J.S. Feng, X.T. Zhang, Q.F. Lu, E.Y. Guo, M.Z. Wei, Energ. Fuel. 36, 5424–5432 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key University Science Research Project of Anhui Province (KJ2021A1393, KJ2020A0975, KJ2020A0977, KJ2021A1401, KJ2021A1405, 2022AH052234, 2022AH052238), Auhui University Quality Engineering Project (2022zmgj033, 2022tsxtz051) and the Key Research Project of Hefei Technology College (2023KJA07, 2021CXTD02, 2021KYQDZ005, 2023KJB08, 2023KJB11, 2023KJB13, 2023KJB14, 2022Bzqn32 )

Author information

Authors and Affiliations

Authors

Contributions

KC: writing, data analysis, drawing, manuscript submission, language editing. MH: prepare the first draft. MQ: data management and analysis, revised draft. LH: data analysis and chart modification. WS: revise the first draft. MX: material related characterization. ZL: button lithium ion battery preparation. XS: lithium ion battery performance test. FZ: research, revise the first draft.

Corresponding author

Correspondence to Kainian Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1268 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, K., Hu, M., Qiu, M. et al. MOF-derived porous NiCo2S4 nanocrystals embedded in nitrogen-doped carbon nanorods as lithium battery anodes. J Mater Sci: Mater Electron 34, 1660 (2023). https://doi.org/10.1007/s10854-023-11075-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11075-5

Navigation