Skip to main content

Advertisement

Log in

High-performance lithium-ion batteries with gel polymer electrolyte based on ultra-thin PVDF film

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Both reducing the liquid electrolyte and solid electrolyte have been acting as novelty strategy for commercial lithium-ion batteries avoiding safety problems such as fires and explosion which is mostly caused by the liquid organic electrolyte flammability. However, reducing the liquid electrolyte leads to capacity loss and energy fade of batteries. Here, we synthesized ultra-thin film of polyvinylidene fluoride (PVDF)-based gel polymer electrolyte (GPE), which also act as the separator, with trace amount electrolyte solution as a whole system to explore the optimized balance between safety and capacity of these new batteries. Both battery rate performance and cyclic stability are significantly improved when the thickness of the polymer electrolytes decrease to 20 μm. Furthermore, the batteries exhibit excellent cyclic stability when a minimum of 5 μl liquid electrolytes was added to the surface of the thin PVDF film (110.9 mAh·g−1 with a capacity retention of 78.6% at 0.5C after 150 cycles). It should be noted that the maximum discharge-specific capacity and discharge-specific capacity after 150 cycles of 5 μl-LFP/GPE-20/GC cell is 1.29 and 1.44 times larger than that of commercial cells. All the experiment results above might provide an optimization technical route and process for real applications in future lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zeng X, Li M, Abd El‐Hady D, Alshitari W, Al‐Bogami AS, Lu J, Amine K (2019) Advanced Energy Materials 9. https://doi.org/10.1002/aenm.201900161

  2. Liu J, Bao Z, Cui Y, Dufek EJ, Goodenough JB, Khalifah P, Li Q, Liaw BY, Liu P, Manthiram A, Meng YS, Subramanian VR, Toney MF, Viswanathan VV, Whittingham MS, Xiao J, Xu W, Yang J, Yang X-Q, Zhang J-G (2019) Nat Energy 4:180–186. https://doi.org/10.1038/s41560-019-0338-x

    Article  CAS  Google Scholar 

  3. Schmuch R, Wagner R, Hörpel G, Placke T, Winter M (2018) Nat Energy 3:267–278. https://doi.org/10.1038/s41560-018-0107-2

    Article  CAS  Google Scholar 

  4. Goodenough JB, Kim Y (2009) Chem Mater 22:587–603. https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  5. Günter FJ, Burgstaller C, Konwitschny F, Reinhart G (2019) J Electrochem Soc 166:A1709–A1714. https://doi.org/10.1149/2.0121910jes

    Article  CAS  Google Scholar 

  6. Armand M, Tarascon J (2008) Nature 451:652–657. https://doi.org/10.1038/451652a

    Article  CAS  PubMed  Google Scholar 

  7. Xi G, Xiao M, Wang SJ, Han DM, Li YN, Meng YZ (2021) Adv Funct Mater 31. https://doi.org/10.1002/adfm.202007598

  8. Hwang J, Matsumoto K, Chen C-Y, Hagiwara R (2021) Energy Environ Sci 14:5834–5863. https://doi.org/10.1039/d1ee02567h

    Article  CAS  Google Scholar 

  9. Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C (2019) Nat Mater 18:1278–1291. https://doi.org/10.1038/s41563-019-0431-3

    Article  CAS  PubMed  Google Scholar 

  10. Ding P, Lin Z, Guo X, Wu L, Wang Y, Guo H, Li L, Yu H (2021). Mater Today. https://doi.org/10.1016/j.mattod.2021.08.005.10.1016/j.mattod.2021.08.005

    Article  Google Scholar 

  11. Liang J, Luo J, Sun Q, Yang X, Li R, Sun X (2019) Energy Stor Mater 21:308–334. https://doi.org/10.1016/j.ensm.2019.06.021

    Article  Google Scholar 

  12. Zhao Q, Liu X, Stalin S, Khan K, Archer LA (2019) Nat Energy 4:365–373. https://doi.org/10.1038/s41560-019-0349-7

    Article  CAS  Google Scholar 

  13. Li S, Lorandi F, Wang H, Liu T, Whitacre JF, Matyjaszewski K (2021) Prog Polym Sci 122. https://doi.org/10.1016/j.progpolymsci.2021.101453

  14. Son CY, Wang ZG (2020) J Chem Phys 153:100903. https://doi.org/10.1063/5.0016163

    Article  CAS  PubMed  Google Scholar 

  15. Castillo J, Qiao L, Santiago A, Judez X, de Buruaga AS, Jimenez G, Armand M, Zhang H, Li C (2022). Energy Materials. https://doi.org/10.20517/energymater.2021.25

    Article  Google Scholar 

  16. Deng K, Zeng Q, Wang D, Liu Z, Qiu Z, Zhang Y, Xiao M, Meng Y (2020) J Mater Chem A 8:1557–1577. https://doi.org/10.1039/c9ta11178f

    Article  CAS  Google Scholar 

  17. Isikli S, Ryan KM (2020) Curr Opin Electrochem 21:188–191. https://doi.org/10.1016/j.coelec.2020.01.015

    Article  CAS  Google Scholar 

  18. Zhang P, Li R, Huang J, Liu B, Zhou M, Wen B, Xia Y, Okada S (2021) RSC Adv 11:11943–11951. https://doi.org/10.1039/d1ra01250a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma C, Cui W, Liu X, Ding Y, Wang Y (2021). Infomat. https://doi.org/10.1002/inf2.12232.10.1002/inf2.12232

    Article  Google Scholar 

  20. Fu S, Zuo LL, Zhou PS, Liu XJ, Ma Q, Chen MJ, Yue JP, Wu XW, Deng Q (2021) Mater Chem Front 5:5211–5232. https://doi.org/10.1039/d1qm00096a

    Article  CAS  Google Scholar 

  21. Yan W, Gao X, Jin X, Liang S, Xiong X, Liu Z, Wang Z, Chen Y, Fu L, Zhang Y, Zhu Y, Wu Y (2021) Acs Appl Mater Inter 13:14258–14266. https://doi.org/10.1021/acsami.1c00182

    Article  CAS  Google Scholar 

  22. Liang S, Yan W, Wu X, Zhang Y, Zhu Y, Wang H, Wu Y (2018) Solid. State. Ionics 318:2–18. https://doi.org/10.1016/j.ssi.2017.12.023

    Article  CAS  Google Scholar 

  23. Miguel A, Fornari RP, Garcia N, Bhowmik A, Carrasco-Busturia D, Garcia-Lastra JM, Tiemblo P (2020) Chemsuschem 13:5523–5530. https://doi.org/10.1002/cssc.202001557

    Article  CAS  PubMed  Google Scholar 

  24. Porcarelli L, Sutton P, Bocharova V, Aguirresarobe RH, Zhu H, Goujon N, Leiza JR, Sokolov A, Forsyth M, Mecerreyes D (2021) Acs Appl Mater Inter 13:54354–54362. https://doi.org/10.1021/acsami.1c15771

    Article  CAS  Google Scholar 

  25. Zheng Y, Li X, Fullerton WR, Qian Q, Shang M, Niu J, Li CY (2021) ACS Appl Energy Mater 4:5639–5648. https://doi.org/10.1021/acsaem.1c00451

    Article  CAS  Google Scholar 

  26. Wang X, Fang Y, Yan X, Liu S, Zhao X, Zhang L (2021) Polymer 230. https://doi.org/10.1016/j.polymer.2021.124038

  27. Borah S, Guha AK, Saikia L, Deka M (2021) J Alloys Compd 886. https://doi.org/10.1016/j.jallcom.2021.161173

  28. Yuan J-J, Sun C-C, Fang L-F, Song Y-Z, Yan Y, Qiu Z-L, Shen Y-J, Li H-Y, Zhu B-K (2021) J Energy Chem 55:313–322. https://doi.org/10.1016/j.jechem.2020.06.052

    Article  Google Scholar 

  29. Wu Y, Li Y, Wang Y, Liu Q, Chen Q, Chen M (2022) J Energy Chem 64:62–84. https://doi.org/10.1016/j.jechem.2021.04.007

    Article  Google Scholar 

  30. Zhao H, Deng N, Kang W, Cheng B (2020) Chem Eng J 390. https://doi.org/10.1016/j.cej.2020.124571

  31. Ciurduc DE, Boaretto N, Fernández-Blázquez JP, Marcilla R (2021) J Power Sources 506. https://doi.org/10.1016/j.jpowsour.2021.230220

  32. Xu P, Chen H, Zhou X, Xiang H (2021) J Membr Sci 617. https://doi.org/10.1016/j.memsci.2020.118660

  33. Yu H, Jin Y, Zhan GD, Liang X (2021) ACS Omega 6:29060–29070. https://doi.org/10.1021/acsomega.1c04275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu J, He P, Zhang B, Wang B, Fan L-Z (2020) Energy Stor Mater 26:283–289. https://doi.org/10.1016/j.ensm.2020.01.006

    Article  Google Scholar 

  35. Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, Nan CW (2019) Adv Mater 31:e1806082. https://doi.org/10.1002/adma.201806082

    Article  CAS  PubMed  Google Scholar 

  36. Zhang X, Han J, Niu X, Xin C, Xue C, Wang S, Shen Y, Zhang L, Li L, Nan CW (2020) Batteries Supercaps 3:876–883. https://doi.org/10.1002/batt.202000081

    Article  CAS  Google Scholar 

  37. Pan J, Zhang Y, Wang J, Bai Z, Cao R, Wang N, Dou S, Huang F (2021) Adv Mater e2107183https://doi.org/10.1002/adma.202107183

  38. Xue C, Zhang X, Wang S, Li L, Nan CW (2020) ACS Appl Mater Interfaces 12:24837–24844. https://doi.org/10.1021/acsami.0c05643

    Article  CAS  PubMed  Google Scholar 

  39. Kim JI, Choi YG, Ahn Y, Kim D, Park JH (2021) J Membr Sci 619. https://doi.org/10.1016/j.memsci.2020.118771

  40. Oh S, Nguyen VH, Bui VT, Nam S, Mahato M, Oh IK (2020) Acs Appl Mater Inter 12:11657–11668. https://doi.org/10.1021/acsami.9b22127

    Article  CAS  Google Scholar 

  41. Wang H, Lin C, Yan X, Wu A, Shen S, Wei G, Zhang J (2020) J Electroanal Chem 869. https://doi.org/10.1016/j.jelechem.2020.114156

  42. Deng K, Xu Z, Zhou S, Zhao Z, Zeng K, Xiao M, Meng Y, Xu Y (2021) J Power Sour 510. https://doi.org/10.1016/j.jpowsour.2021.230411

  43. Gou J, Liu W, Tang A (2020) J Mater Sci 55:10699–10711. https://doi.org/10.1007/s10853-020-04667-7

    Article  CAS  Google Scholar 

  44. Gou J, Liu W, Tang A, Xie H (2021) Eur Polym J 158. https://doi.org/10.1016/j.eurpolymj.2021.110703

  45. Xi Y, Liu Y, Qin Z, Jin S, Zhang D, Zhang R, Jin M (2018) J Alloy Compd 737:693–698. https://doi.org/10.1016/j.jallcom.2017.11.266

    Article  CAS  Google Scholar 

  46. Lei X, Zhang H, Chen Y, Wang W, Ye Y, Zheng C, Deng P, Shi Z (2015) J Alloy Compd 626:280–286. https://doi.org/10.1016/j.jallcom.2014.09.169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sample synthesis, regular sample characterization, and electrochemical performance tests were carried out at the Chongqing Institute of Green and Intelligent Technology (CIGIT).

All authors acknowledge the support from Chongqing Natural Science Foundation (Grant Nos. cstc2021jcyj-msxmX1015), Key Field Science and Technology Breakthrough Plan Project of Science and Technology Bureau of BINGTUAN (No. 2021AB026), and Chongqing Talent, Innovation, and Entrepreneurship Leading Talent Project (No. CQYC20210301363).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqiang Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2165 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, T., Kang, S., Zhang, K. et al. High-performance lithium-ion batteries with gel polymer electrolyte based on ultra-thin PVDF film. Ionics 28, 3269–3276 (2022). https://doi.org/10.1007/s11581-022-04588-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04588-2

Keywords

Navigation