Skip to main content

Advertisement

Log in

Study on ionic liquid-based gel polymer electrolytes for dual-graphite battery systems

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Compared with Li-ion batteries, dual-graphite batteries (DGBs) have low cost, easy handling, and renewable advantages. However, DGBs with pure ionic liquid as the electrolyte (LEDGBs) suffer from high self-discharge rate (SDR). Here, a gel polymer electrolyte (ILGPE) was prepared using polyvinylidene fluoride as the polymer matrix and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide as the electrolyte and assembled into a gel polymer double-graphite battery (IGDGB). The results show that the IGDGB has an initial discharge capacity of 34.9 mAh g-1, and SDR is only 3.63%/h lower than the LEDGB (25.07%/h) after resting for 3 h. Notably, even after resting for 10 h, the IGDGB still has a discharge capacity of 27.5 mAh g-1. Meanwhile, the electrochemical impedance spectroscopy analysis results indicate that the low SDR of IGDGB is due to the limiting effect of ILGPE on the carrier strength. This result provides an idea of self-discharge reduction strategy for other electrochemical energy storage systems with intercalation storage mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li J, Fleetwood J, Hawley WB, Kays W (2022) From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem Rev 122(1):903–956. https://doi.org/10.1021/acs.chemrev.1c00565

    Article  CAS  PubMed  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657. https://doi.org/10.1038/451652a

    Article  CAS  PubMed  Google Scholar 

  3. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458(7235):190–193. https://doi.org/10.1038/nature07853

    Article  CAS  PubMed  Google Scholar 

  4. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energ Environ Sci 4(9):3243–3262. https://doi.org/10.1039/c1ee01598b

    Article  CAS  Google Scholar 

  5. Dai H, Zhang G, Rawach D, Fu C, Wang C, Liu X, Dubois M, Lai C, Sun S (2021) Polymer gel electrolytes for flexible supercapacitors: recent progress, challenges, and perspectives. Energy Storage Mater 34:320–355. https://doi.org/10.1016/j.ensm.2020.09.018

    Article  Google Scholar 

  6. Luo P, Zheng C, He J, Tu X, Sun W, Pan H, Zhou Y, Rui X, Zhang B, Huang K (2022) Structural engineering in graphite-based metal-ion batteries. Adv Funct Mater 32(9):2107277. https://doi.org/10.1002/adfm.202107277

    Article  CAS  Google Scholar 

  7. Rothermel S, Meister P, Schmuelling G, Fromm O, Meyer HW, Nowak S, Winter M, Placke T (2014) Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte. Energ Environ Sci 7(10):3412–3423. https://doi.org/10.1039/c4ee01873g

    Article  CAS  Google Scholar 

  8. Yang QW, Zhang ZQ, Sun XG, Hu YS, Xing HB, Dai S (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47(6):2020–2064. https://doi.org/10.1039/c7cs00464h

    Article  CAS  PubMed  Google Scholar 

  9. Pan S, Yao M, Zhang J, Li B, Xing C, Song X, Su P, Zhang H (2020) Recognition of ionic liquids as high-voltage electrolytes for supercapacitors. Front Chem 8. https://doi.org/10.3389/fchem.2020.00261

  10. Fan JX, Zhang ZX, Liu YH, Wang AY, Li L, Yuan WH (2017) An excellent rechargeable PP14TFSI ionic liquid dual-ion battery. Chem Commun 53(51):6891–6894. https://doi.org/10.1039/c7cc02534c

    Article  CAS  Google Scholar 

  11. Huang Y, Xiao RG, Ma ZM, Zhu WC (2019) Developing dual-graphite batteries with pure 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid as the electrolyte. Chemelectrochem 6(17):4681–4688. https://doi.org/10.1002/celc.201901171

    Article  CAS  Google Scholar 

  12. Wang AY, Yuan WH, Fan JX, Li L (2018) A dual-graphite battery with pure 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide as the electrolyte. Energ Technol 6(11):2172–2178. https://doi.org/10.1002/ente.201800269

    Article  CAS  Google Scholar 

  13. Vranes M, Dozic S, Djeric V, Gadzuric S (2012) Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 57(4):1072–1077. https://doi.org/10.1021/je2010837

    Article  CAS  Google Scholar 

  14. Fang Y-B, Zheng W, Li L, Yuan W-H (2020) An ultrahigh rate ionic liquid dual-ion battery based on a poly(anthraquinonyl sulfide) anode. Acs Appl Energ Mater 3(12):12276–12283. https://doi.org/10.1021/acsaem.0c02335

    Article  CAS  Google Scholar 

  15. Zhu W, Xiao R, Cai Z, Huang Y, Chen J (2021) Electrochemically active layer on the surface of poly(anthraquinonyl sulfide) anode in dual-ion batteries. Polym 212:123167. https://doi.org/10.1016/j.polymer.2020.123167

    Article  CAS  Google Scholar 

  16. Jiang B, Zhu W, Cai Z, Zeng Y, Xiao R (2022) Graphene-based conductive networks to enhance the performance of polyimide anode materials for dual-ion batteries. Chemistryselect 7(9):e202200092. https://doi.org/10.1002/slct.202200092

    Article  CAS  Google Scholar 

  17. Zhu W, Huang Y, Jiang B, Xiao R (2021) A metal-free ionic liquid dual-ion battery based on the reversible interaction of 1-butyl-1-methylpyrrolidinium cations with 1,4,5,8-naphthalenetetracarboxylic dianhydride. J Mol Liq 339:116789. https://doi.org/10.1016/j.molliq.2021.116789

    Article  CAS  Google Scholar 

  18. Liu H, Zhu W, Zhou H, Wang J (2022) Research of dual-ion polymer batteries based on N-butyl-N-methylpiperidinium bis(trifluoromethylsulfonyl)imide ionic liquid electrolyte. Ionics. https://doi.org/10.1007/s11581-022-04652-x

  19. Kim J, Kim Y, Yoo J, Kwon G, Ko Y, Kang K (2022) Organic batteries for a greener rechargeable world. Nat Rev Mater. https://doi.org/10.1038/s41578-022-00478-1

  20. Li W, Pang Y, Zhu T, Wang Y, Xia Y (2018) A gel polymer electrolyte based lithium-sulfur battery with low self-discharge. Solid State Ion 318:82–87. https://doi.org/10.1016/j.ssi.2017.08.018

    Article  CAS  Google Scholar 

  21. Zhao C, Sun X, Li W, Shi M, Ren K, Lu X (2021) Reduced self-discharge of supercapacitors using piezoelectric separators. Acs Appl Energ Mater 4(8):8070–8075. https://doi.org/10.1021/acsaem.1c01373

    Article  CAS  Google Scholar 

  22. Obeidat AM, Rastogi AC (2016) Graphene and poly (3,4-ethylenedioxythiophene) (PEDOT) based hybrid supercapacitors with ionic liquid gel electrolyte in solid state design and their electrochemical performance in storage of solar photovoltaic generated electricity. MRS Adv 1(53):3565–3571. https://doi.org/10.1557/adv.2016.322

    Article  CAS  Google Scholar 

  23. Kasprzak D, Galiński M (2022) Biopolymer-based gel electrolytes with an ionic liquid for high-voltage electrochemical capacitors. Electrochem Commun 138:107282. https://doi.org/10.1016/j.elecom.2022.107282

    Article  CAS  Google Scholar 

  24. Dong X, Chen L, Su X, Wang Y, Xia Y (2016) Flexible aqueous lithium-ion battery with high safety and large volumetric energy density. Angew Chem Int Ed 55(26):7474–7477. https://doi.org/10.1002/anie.201602766

    Article  CAS  Google Scholar 

  25. Choudhury S, Saha T, Naskar K, Stamm M, Heinrich G, Das A (2017) A highly stretchable gel-polymer electrolyte for lithium-sulfur batteries. Polym 112:447–456. https://doi.org/10.1016/j.polymer.2017.02.021

    Article  CAS  Google Scholar 

  26. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem-Us 5(9):2326–2352. https://doi.org/10.1016/j.chempr.2019.05.009

    Article  CAS  Google Scholar 

  27. Yan J, Li S, Lan B, Wu Y, Lee PS (2020) Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv Funct Mater 30(2):1902564. https://doi.org/10.1002/adfm.201902564

    Article  CAS  Google Scholar 

  28. Wu YX, Li Y, Wang Y, Liu Q, Chen QG, Chen MH (2022) Advances and prospects of PVDF based polymer electrolytes. J Energy Chem 64:62–84. https://doi.org/10.1016/j.jechem.2021.04.007

    Article  CAS  Google Scholar 

  29. Saito Y, Kataoka H, Quartarone E, Mustarelli P (2002) Carrier migration mechanism of physically cross-linked polymer gel electrolytes based on PVDF membranes. J Phys Chem B 106(29):7200–7204. https://doi.org/10.1021/jp020633v

    Article  CAS  Google Scholar 

  30. Wieczorek W, Such K, Wyciślik H, Płocharski J (1989) Modifications of crystalline structure of peo polymer electrolytes with ceramic additives. Solid State Ion 36(3):255–257. https://doi.org/10.1016/0167-2738(89)90185-9

    Article  CAS  Google Scholar 

  31. Capuano F, Croce F, Scrosati B (1991) Composite polymer electrolytes. J Electrochem Soc 138(7):1918–1922. https://doi.org/10.1149/1.2085900

    Article  CAS  Google Scholar 

  32. Shen BS, Lang JW, Guo RS, Zhang X, Yan XB (2015) Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MnO2 using ionic liquid gel electrolytes. ACS Appl Mater Interfaces 7(45):25378–25389. https://doi.org/10.1021/acsami.5b07909

    Article  CAS  PubMed  Google Scholar 

  33. Deng XY, Li JJ, Zhu S, Ma LY, Zhao NQ (2019) Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Storage Mater 23:491–498. https://doi.org/10.1016/j.ensm.2019.04.015

    Article  Google Scholar 

  34. Wang J, Chen G, Song S (2020) Na-ion conducting gel polymer membrane for flexible supercapacitor application. Electrochim Acta 330:135322. https://doi.org/10.1016/j.electacta.2019.135322

    Article  CAS  Google Scholar 

  35. Watanabe M (2021) Advances in organic ionic materials based on ionic liquids and polymers. B Chem Soc Jpn 94(11):2739–2769. https://doi.org/10.1246/bcsj.20210281

    Article  CAS  Google Scholar 

  36. Ravi M, Kim S, Ran F, Kim DS, Lee YM, Ryou M-H (2021) Hybrid gel polymer electrolyte based on 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl) imide for flexible and shape-variant lithium secondary batteries. J Membr Sci 621:119018. https://doi.org/10.1016/j.memsci.2020.119018

    Article  CAS  Google Scholar 

  37. Hou X, Siow KS (2001) Electrochemical characterization of plasticized polymer electrolytes based on ABS/PMMA blends. J Solid State Electrochem 5(4):293–299. https://doi.org/10.1007/s100080000144

    Article  CAS  Google Scholar 

  38. Lun P, Liu P, Lin H, Dai Z, Zhang Z, Chen D (2019) Ionic conductivity promotion of polymer membranes with oxygen-ion conducting nanowires for rechargeable lithium batteries. J Membr Sci 580:92–100. https://doi.org/10.1016/j.memsci.2019.03.006

    Article  CAS  Google Scholar 

  39. Guo Y, Chen X, Xie Y, Shen Z, Ling Y, Xue X, Tong Y, Wang J, Zhang W, Zhao J (2022) A gel polymer electrolyte film based on chitosan derivative and ionic liquid for the LiFePO4 cathode solid Li metal battery. Mater Today Commun 31:103597. https://doi.org/10.1016/j.mtcomm.2022.103597

    Article  CAS  Google Scholar 

  40. Jiao S, Lei H, Tu J, Zhu J, Wang J, Mao X (2016) An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon 109:276–281. https://doi.org/10.1016/j.carbon.2016.08.027

    Article  CAS  Google Scholar 

  41. Dam T, Tripathy SN, Paluch M, Jena SS, Pradhan DK (2016) Investigations of relaxation dynamics and observation of nearly constant loss phenomena in PEO20-LiCF3SO3-ZrO2 based polymer nano-composite electrolyte. Electrochim Acta 202:147–156. https://doi.org/10.1016/j.electacta.2016.03.134

    Article  CAS  Google Scholar 

  42. Tang J, Muchakayala R, Song S, Wang M, Kumar KN (2016) Effect of EMIMBF4 ionic liquid addition on the structure and ionic conductivity of LiBF4-complexed PVdF-HFP polymer electrolyte films. Polym Test 50:247–254. https://doi.org/10.1016/j.polymertesting.2016.01.023

    Article  CAS  Google Scholar 

  43. Capiglia C, Saito Y, Kataoka H, Kodama T, Quartarone E, Mustarelli P (2000) Structure and transport properties of polymer gel electrolytes based on PVdF-HFP and LiN(C2F5SO2)2. Solid State Ion 131(3):291–299. https://doi.org/10.1016/S0167-2738(00)00678-0

    Article  CAS  Google Scholar 

  44. Li W, Meng Q, Zheng Y, Zhang Z, Xia W, Xu Z (2010) Electric energy storage properties of poly(vinylidene fluoride). Appl Phys Lett 96(19):192905. https://doi.org/10.1063/1.3428656

    Article  CAS  Google Scholar 

  45. Xu D, Su J, Jin J, Sun C, Ruan Y, Chen C, Wen Z (2019) In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12 as initiator and ion-conductive filler. Adv Energy Mater 9(25):1900611. https://doi.org/10.1002/aenm.201900611

    Article  CAS  Google Scholar 

  46. Salimi A, Yousefi AA (2003) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22(6):699–704. https://doi.org/10.1016/S0142-9418(03)00003-5

    Article  CAS  Google Scholar 

  47. Yang Y, Wu Q, Wang D, Ma C, Chen Z, Zhu C, Gao Y, Li C (2020) Decoupling the mechanical strength and ionic conductivity of an ionogel polymer electrolyte for realizing thermally stable lithium-ion batteries. J Membr Sci 595:117549. https://doi.org/10.1016/j.memsci.2019.117549

    Article  CAS  Google Scholar 

  48. Zhang M, Zuo Q, Wang L, Yu S, Mai Y, Zhou Y (2020) Poly(ionic liquid)-based polymer composites as high-performance solid-state electrolytes: benefiting from nanophase separation and alternating polymer architecture. Chem Commun 56(57):7929–7932. https://doi.org/10.1039/D0CC03281F

    Article  CAS  Google Scholar 

  49. Fan J, Xiao Q, Fang Y, Li L, Feng W, Yuan W (2019) Reversible intercalation of 1-ethyl-3-methylimidazolium cations into MoS2 from a pure ionic liquid electrolyte for dual-ion cells. Chemelectrochem 6(3):676–683. https://doi.org/10.1002/celc.201801583

    Article  CAS  Google Scholar 

  50. Li Z, Liu J, Li J, Kang F, Gao F (2018) A novel graphite-based dual ion battery using PP14NTF2 ionic liquid for preparing graphene structure. Carbon 138:52–60. https://doi.org/10.1016/j.carbon.2018.06.002

    Article  CAS  Google Scholar 

  51. Li Z, Liu J, Niu B, Li J, Kang F (2018) A novel graphite–graphite dual ion battery using an AlCl3–[EMIm]Cl liquid electrolyte. Small 14(28):1800745. https://doi.org/10.1002/smll.201800745

    Article  CAS  Google Scholar 

Download references

Funding

The present work was supported by the National Natural Science Foundation of China (grant no. 51764008).

Author information

Authors and Affiliations

Authors

Contributions

Yong Zeng: data curation, writing—original draft, and writing—reviewing and editing. Keliang Wang: formal analysis and resources. Xiang Ke: formal analysis and investigation. Xiaoqing Tan: visualization. Bo Jiang and Weichen Zhu: validation. Rengui Xiao: methodology, resources, and funding acquisition.

Corresponding author

Correspondence to Rengui Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 8378 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Wang, K., Ke, X. et al. Study on ionic liquid-based gel polymer electrolytes for dual-graphite battery systems. Ionics 29, 1381–1393 (2023). https://doi.org/10.1007/s11581-023-04893-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04893-4

Keywords

Navigation