Skip to main content
Log in

Green synthesis and electrochemical performances of ZnO/graphene nanocomposites

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

ZnO/graphene nanocomposites were prepared for supercapacitance materials through a simple two-step process involving chemical oxidation of flake graphite powders and solvothermal synthesis of ZnO/graphene nanocomposites in ethanol. The structure, Brunauer-Emmett-Teller surface area, composition, and morphology of the as-prepared materials were characterized by X-ray diffraction, N2 adsorption/desorption analysis, Fourier transform infrared spectroscopy, and transmission electron microscopy. Results showed that the ZnO nanorods had wurtzite structure and were successfully loaded on the graphene sheets. The electrochemical properties of ZnO/graphene nanocomposites formed by different masses of graphite oxide to zinc acetylacetonate were evaluated by means of cyclic voltammetry and galvanostatic charge-discharge studies. The nanocomposite prepared with graphite oxide (60 mg) and zinc acetylacetonate (15 mg) showed a high specific capacitance of 188 Fg−1 at a current density of 0.1 Ag−1 in the 6 M KOH solution and better long-term stability along with 98.25% of its initial capacitance after 1500 cycles at 1.2 Ag−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thiagarajan K, Theerthagiri J, Senthil RA, Arunackalam P, Madhavan J, Ghanem MA (2018) Synthesis of Ni3V2O8@graphene oxide nanocomposite as an efficient electrode material for supercapacitor applications. J Solid State Electrochem 22:527–536

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  3. Lim TG, Suk JW (2021) Effect of the particle size of graphene oxide powders on the electrochemical performance of graphene-based supercapacitors. Funct Compos Struct 3:015005

    Article  CAS  Google Scholar 

  4. Theerthagirl J, Salla S, Senthil RA (2019) A review on ZnO nanostructured materials: energy, environmental and biological applications. Nanotechnology 30:27

    Google Scholar 

  5. Ding FF, Zhang N, Zhang C (2015) Synthsis and electrochemical properties of functionalized graphene oxide/ZnO composites. Eng Mater 680:233–237

    Google Scholar 

  6. Samuel E, Londhe PU, Joshi B, Kim MW (2018) Electrosprayed graphene decorated with ZnO nanoparticles for supercapacitors. J Alloys Compd 741:781–791

    Article  CAS  Google Scholar 

  7. Miah M, Mondal TK, Ghosh A, Saha SK (2020) Study of highly porous ZnO nanospheres embedded reduced graphene oxide for high performance supercapacitor application. Electrochim Acta 354:136675

    Article  CAS  Google Scholar 

  8. Kumar R, Youssry SM, Abdei-Galei MM, Matsuda A (2020) One-pot synthesis of reduced graphene oxide nanosheets anchored ZnO nanoparticles via microwave approach for electrochemical performance as supercapacitor electrode. J Mater Sci Mater Electron 31:15456–15465

    Article  Google Scholar 

  9. Haldoral Y, Voit W, Shim JJ (2014) Nano ZnO@reduced graphene oxide composite for high performance supercapacitor: green synthesis in supercritical fluid. Electrochim Acta 120:65–72

    Article  Google Scholar 

  10. Zhang YP, Li HB, Pan LK, Lu T, Sun Z (2009) Capacitive behavior of graphene-ZnO composite film for supercapacitors. J Electroanal Chem 634(1):68–71

    Article  CAS  Google Scholar 

  11. Li XG, Wang ZK, Qiu YF, Pan QM, Hu PA (2015) 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. J Alloys Compd 620:31–37

    Article  CAS  Google Scholar 

  12. Samuel E, Londhe PU, Joshi B, Kim MW, Kim K, Swihart MT, Chaure NB, Yoon SS (2018) Electrosprayed graphene decorated with ZnO nanoparticles for supercapacitors. J Alloys Compd 741:781–791

    Article  CAS  Google Scholar 

  13. Bu TYY, Huang R (2015) One-pot synthesis of ZnO/reduced graphene oxide nanocomposite for supercapacitor application. Mater Sci Semicond Process 31:131–138

    Article  CAS  Google Scholar 

  14. Subramani K, Sathish M (2019) Facile synthesis of ZnO nanoflowers/reduced graphene oxide nanocomposite using zinc hexacyanoferrate for supercapacitor applications. Mater Lett 236:424–427

    Article  CAS  Google Scholar 

  15. Du XX, Wang S, Liu YC, Lu MP, Wu K, Lu MG (2019) Self-assembly of free-standing hybrid film based on graphene and zinc oxide nanoflakes for high-performance supercapacitors. J Solid State Chem 277:441–447

    Article  CAS  Google Scholar 

  16. Ezeigwe ER, Tan MTT, Khiew PS, Siong CW (2015) One-step green synthesis of graphene/ZnO nanocomposites for electrochemical capacitors. Ceram Int 41:715–724

    Article  CAS  Google Scholar 

  17. Du GX, Wang XX, Zhang LD, Feng Y, Liu Y (2013) One-step green synthesis of graphene/ZnO nanocomposites. Mater Lett 98:168–170

    Article  CAS  Google Scholar 

  18. Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  19. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxide. Chem Mater 18:2740

    Article  Google Scholar 

  20. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659

    Article  CAS  Google Scholar 

  21. Gao XF, Jang JY, Nagase S (2010) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842

    Article  CAS  Google Scholar 

  22. Ambrozic G, Skapin SD, Zigon M, Orel ZC (2011) The formation of zinc oxide nanoparticles from zinc acrtylacetonate hydrate in tert-butanol: a comparative mechanistic study with iaomeric C4 alcohols as the media. Mater Res Bull 46:2497–2501

    Article  CAS  Google Scholar 

  23. Petrovic Z, Ristic M, Music S, Fabian M (2015) Nano/microstructure and optical properties of ZnO particles precipitated from zinc acetylacetonate. J Mol Struct 1090:121–128

    Article  CAS  Google Scholar 

  24. Saranya M, Rajendran R, Wang F (2016) Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications. J Sci Adv Mater Dev 1:454–460

    Google Scholar 

  25. Wu F, Xie AM, Sun MX, Wang Y, Wang MY (2015) Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J Mater Chem A 3:14358–14369

    Article  CAS  Google Scholar 

  26. Panigrahy B, Srivastava S (2016) Minuscule weight percent of graphene oxide and reduced graphene oxide modified Ag3PO4: new insight into improved photocatalytic activity. New J Chem 40:3370–3384

    Article  CAS  Google Scholar 

  27. Matsuo Y, Iwasa K, Sugie Y, Mineshige A, Usami H (2010) Preparation of carbon-based transparent and conductive thin films by pyrolysis of silylated graphite oxides. Carbon 48:4009–4014

    Article  CAS  Google Scholar 

  28. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  29. Han W, Ren L, Qi X, Liu Y, Wei X, Huang Z, Zhang J (2014) Synthesis of Cd/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation. Appl Surf Sci 299:12–18

    Article  CAS  Google Scholar 

  30. Zeng H, Cao Y, Xie X, Yang J, Tang Z, Wang X, Sun L (2013) Synthesis optical and electrochemical properties of ZnO nanowires/graphene oxide heterostructures. Nanoscale Res Lett 8:133

    Article  Google Scholar 

  31. Hughesn M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH (2002) Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem Mater 14:1610–1613

    Article  Google Scholar 

  32. Lin ZY, Yao YG, Li Z, Liu Y, Li Z, Wong CP (2010) Solvent-assisted thermal reduction of graphite oxide. J Phys Chem C 114:14819–14825

    Article  CAS  Google Scholar 

  33. Liao JJ, Li YJ, Wang ZY, Lv LF, Chang LP (2021) In-situ preparation of Fe3O4/graphene nanocomposites and their electrochemical performances for supercapacitor. Mater Chem Phys 258:123995

    Article  CAS  Google Scholar 

  34. Qian W, Chen ZQ, Cottingham S, Merrill WA, Swartz NA, Goforth AM, Clare TL, Jiao J (2012) Surfactant-free hybridization of transition metal oxide nanoparticles with conductive graphene for high-performance supercapacitor. Green Chem 14:371–377

    Article  CAS  Google Scholar 

  35. Kierzek K, Frackowiak E, Lota G, Gryglewicz G, Machnikowski J (2004) Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim Acta 49:515–523

    Article  CAS  Google Scholar 

  36. Wakeland S, Martinez R, Grey JK, Luhrs CC (2010) Production of graphene from graphite oxide using urea as expansion-reduction agent. Carbon 48:3463–3470

    Article  CAS  Google Scholar 

  37. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  38. Ghosh A, Miah M, Majumder C, Bag S, Chakravorty D, Saha SK (2018) Synthesis of multilayered structure of nano-dimensional silica glass/reduced graphene oxide for advanced electrochemical applications. Nanoscale 10:5539

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfu Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, G. Green synthesis and electrochemical performances of ZnO/graphene nanocomposites. Ionics 28, 3547–3555 (2022). https://doi.org/10.1007/s11581-022-04571-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04571-x

Keywords

Navigation