Skip to main content
Log in

Facile hydrothermal synthesis of α-MnO2 and δ-MnO2 for pseudocapacitor applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We report the comparison of the electrochemical performances of α-MnO2 and δ-MnO2 produced by hydrothermal treatment. The structure and morphology of these materials were analyzed by SEM, HRTEM, XRD, and XPS, while their electrochemical properties were tested in the 1 M Na2SO4 aqueous electrolyte by cyclic voltammetry, galvanostatic charge–discharge measurements, and electrochemical impedance spectroscopy. The specific capacitance of δ-MnO2 at 1 mV·s−1 was 4.8 times higher than that of α-MnO2 (211 vs. 44 F·g−1) because of the layered structure of δ-MnO2 that provided better availability of the electrode surface for electrolyte ions during charge–discharge cycles and pseudocapacitance behavior attributed to faradaic redox reactions. Moreover, δ-MnO2 revealed high electrochemical stability (more than 98% of the initial capacitance after 5000 charge/discharge cycles) confirming its good performance as an electrode material for pseudocapacitors. The contributions of surface and diffusion capacitances were analyzed by the differentiation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. https://doi.org/10.1039/c1cs15060j

    Article  CAS  PubMed  Google Scholar 

  2. Arkhipova EA, Ivanov AS, Maslakov KI, Savilov SV (2020) Nitrogen doping of mesoporous graphene nanoflakes as a way to enhance their electrochemical performance in ionic liquid-based supercapacitors. J Energy Storage 30:101464. https://doi.org/10.1016/j.est.2020.101464

    Article  Google Scholar 

  3. Horn M, MacLeod J, Liu M et al (2019) Supercapacitors: a new source of power for electric cars? Econ Anal Policy 61:93–103. https://doi.org/10.1016/j.eap.2018.08.003

    Article  Google Scholar 

  4. Zhu S, Ni J, Li Y (2020) Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res 13:1825–1841. https://doi.org/10.1007/s12274-020-2729-5

    Article  CAS  Google Scholar 

  5. Zhu S, Sheng J, Jia G et al (2021) Monolithic flexible supercapacitors drawn with nitrogen-doped carbon nanotube-graphene ink. Mater Res Bull 139:111266. https://doi.org/10.1016/j.materresbull.2021.111266

    Article  CAS  Google Scholar 

  6. Zhu J, Zhang D, Zhu Z et al (2021) Review and prospect of MnO2-based composite materials for supercapacitor electrodes. Ionics (Kiel) 27:3699–3714. https://doi.org/10.1007/s11581-021-04139-1

    Article  CAS  Google Scholar 

  7. Huang M, Li F, Dong F et al (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423. https://doi.org/10.1039/c5ta05523g

    Article  CAS  Google Scholar 

  8. Majumdar D, Maiyalagan T, Jiang Z (2019) Recent progress in ruthenium oxide-based composites for supercapacitor applications. ChemElectroChem 6:4343–4372. https://doi.org/10.1002/celc.201900668

    Article  CAS  Google Scholar 

  9. Lee JW, Ahn T, Kim JH et al (2011) Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim Acta 56:4849–4857. https://doi.org/10.1016/j.electacta.2011.02.116

    Article  CAS  Google Scholar 

  10. Zhang L, Zhang H, Chu X, Han X (2019) One-dimensional mesoporous Co3O4 tubules for enhanced performance supercapacitor and enzymeless glucose sensing. Ionics (Kiel) 25:5445–5458. https://doi.org/10.1007/s11581-019-03087-1

    Article  CAS  Google Scholar 

  11. Sufyan Javed M, Imran M, Assiri MA et al (2021) One-step synthesis of carbon incorporated 3D MnO2 nanorods as a highly efficient electrode material for pseudocapacitors. Mater Lett 295:129838. https://doi.org/10.1016/j.matlet.2021.129838

    Article  CAS  Google Scholar 

  12. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614. https://doi.org/10.1039/c3ee44164d

    Article  CAS  Google Scholar 

  13. Zhao S, Liu T, Hou D et al (2015) Controlled synthesis of hierarchical birnessite-type MnO 2 nanoflowers for supercapacitor applications. Appl Surf Sci 356:259–265. https://doi.org/10.1016/j.apsusc.2015.08.037

    Article  CAS  Google Scholar 

  14. Arkhipova EA, Ivanov AS, Isaikina OY, et al (2022) Application of MnO2/MWCNT composite in supercapacitors. Mater Today Proc 12–15https://doi.org/10.1016/j.matpr.2021.12.408

  15. Wu MS (2005) Electrochemical capacitance from manganese oxide nanowire structure synthesized by cyclic voltammetric electrodeposition. Appl Phys Lett 87:1–3. https://doi.org/10.1063/1.2089169

    Article  CAS  Google Scholar 

  16. Huang J, Dai Y, Singewald K et al (2019) Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions. Chem Eng J 370:906–915. https://doi.org/10.1016/j.cej.2019.03.238

    Article  CAS  Google Scholar 

  17. Su D, Ahn HJ, Wang G (2013) Hydrothermal synthesis of α-MnO2 and β-MnO 2 nanorods as high capacity cathode materials for sodium ion batteries. J Mater Chem A 1:4845–4850. https://doi.org/10.1039/c3ta00031a

    Article  CAS  Google Scholar 

  18. Davoglio RA, Cabello G, Marco JF, Biaggio SR (2018) Synthesis and characterization of α-MnO2 nanoneedles for electrochemical supercapacitors. Electrochim Acta 261:428–435. https://doi.org/10.1016/j.electacta.2017.12.118

    Article  CAS  Google Scholar 

  19. Wu Z, Li L, Yan J, Zhang X (2017) Materials design and system construction for conventional and new-concept supercapacitors. Adv Sci 4:1600382. https://doi.org/10.1002/advs.201600382

    Article  CAS  Google Scholar 

  20. Zhang M, Yang D, Li J (2020) Effective improvement of electrochemical performance of electrodeposited MnO2 and MnO2/reduced graphene oxide supercapacitor materials by alcohol pretreatment. J Energy Storage 30:101511. https://doi.org/10.1016/j.est.2020.101511

    Article  Google Scholar 

  21. Xia H, Wang Y, Lin J, Lu L (2012) Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Res Lett 7:33. https://doi.org/10.1186/1556-276X-7-33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Oyedotun KO, Mirghni AA, Fasakin O et al (2021) Effect of growth-time on electrochemical performance of birnessite manganese oxide (δ-MnO2) as electrodes for supercapacitors: an insight into neutral aqueous electrolytes. J Energy Storage 36:102419. https://doi.org/10.1016/j.est.2021.102419

    Article  Google Scholar 

  23. Qin M, Zhao H, Yang W et al (2016) A facile one-pot synthesis of three-dimensional microflower birnessite (δ-MnO2) and its efficient oxidative degradation of rhodamine B. RSC Adv 6:23905–23912. https://doi.org/10.1039/c5ra24848e

    Article  CAS  Google Scholar 

  24. Wang JG, Yang Y, Huang ZH, Kang F (2011) Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors. Electrochim Acta 56:9240–9247. https://doi.org/10.1016/j.electacta.2011.07.140

    Article  CAS  Google Scholar 

  25. Zhao S, Liu T, Shi D et al (2015) Hydrothermal synthesis of urchin-like MnO 2 nanostructures and its electrochemical character for supercapacitor. Appl Surf Sci 351:862–868. https://doi.org/10.1016/j.apsusc.2015.06.045

    Article  CAS  Google Scholar 

  26. Liu TT, Shao GJ, Ji MT, Ma ZP (2013) Research progress in nano-structured MnO2 as electrode materials for supercapacitors. Asian J Chem 25:7065–7070. https://doi.org/10.14233/ajchem.2013.14548

    Article  CAS  Google Scholar 

  27. Wang X, Li Y (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem - A Eur J 9:300–306. https://doi.org/10.1002/chem.200390024

    Article  Google Scholar 

  28. He B, Cheng G, Zhao S et al (2019) Controlled synthesis of tunnel-structured MnO2 through hydrothermal transformation of δ-MnO2 and their catalytic combustion of dimethyl ether. J Solid State Chem 269:305–311. https://doi.org/10.1016/j.jssc.2018.09.005

    Article  CAS  Google Scholar 

  29. Stranick MA (1999) MnO2 by XPS. Surf Sci Spectra 6:31–38. https://doi.org/10.1116/1.1247888

    Article  CAS  Google Scholar 

  30. Langell MA, Hutchings CW, Carson GA, Nassir MH (1996) High resolution electron energy loss spectroscopy of MnO(100) and oxidized MnO(100). J Vac Sci Technol A Vacuum, Surfaces, Film 14:1656–1661. https://doi.org/10.1116/1.580314

    Article  CAS  Google Scholar 

  31. Beyreuther E, Grafström S, Eng LM et al (2006) XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content. Phys Rev B - Condens Matter Mater Phys 73:1–9. https://doi.org/10.1103/PhysRevB.73.155425

    Article  CAS  Google Scholar 

  32. Benhaddad L, Makhloufi L, Messaoudi B et al (2011) Reactivity of nanostructured MnO2 in alkaline medium studied with a microcavity electrode: effect of oxidizing agent. J Mater Sci Technol 27:585–593. https://doi.org/10.1016/S1005-0302(11)60112-6

    Article  CAS  Google Scholar 

  33. Shi Y, Zhang M, Yang D, Li J (2021) Study on preparation of high performance manganese dioxide supercapacitor by cyclic voltammetry. Ionics (Kiel) 27:4521–4529. https://doi.org/10.1007/s11581-021-04223-6

    Article  CAS  Google Scholar 

  34. Wei L, Sevilla M, Fuertes AB et al (2012) Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv Funct Mater 22:827–834. https://doi.org/10.1002/adfm.201101866

    Article  CAS  Google Scholar 

  35. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO 2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931. https://doi.org/10.1021/jp074464w

    Article  CAS  Google Scholar 

  36. Kumar A, Thomas A, Gupta A et al (2021) Facile synthesis of MnO2-Cu composite electrode for high performance supercapacitor. J Energy Storage 42:103100. https://doi.org/10.1016/j.est.2021.103100

    Article  Google Scholar 

  37. Huang Y, Weng D, Kang S, Lu J (2020) Controllable synthesis of nanostructured MnO 2 as electrode material of supercapacitors. J Nanosci Nanotechnol 20:4815–4823. https://doi.org/10.1166/jnn.2020.18497

    Article  PubMed  Google Scholar 

  38. Zhang X, Sun X, Zhang H et al (2013) Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors. Electrochim Acta 87:637–644. https://doi.org/10.1016/j.electacta.2012.10.022

    Article  CAS  Google Scholar 

  39. Sindhuja M, Padmapriya S, Sudha V, Harinipriya S (2019) Phase specific Α-MnO 2 synthesis by microbial fuel cell for supercapacitor applications with simultaneous power generation. Int J Hydrogen Energy 44:5389–5398. https://doi.org/10.1016/j.ijhydene.2018.08.123

    Article  CAS  Google Scholar 

  40. Cremonezzi JM de O, Tiba DY, Domingues SH (2020) Fast synthesis of δ-MnO2 for a high-performance supercapacitor electrode. SN Appl Sci 2:1–9.https://doi.org/10.1007/s42452-020-03488-2

  41. Zhao S, Liu T, Javed MS et al (2016) Rational synthesis of Cu-doped porous δ-MnO2 microsphere for high performance supercapacitor applications. Electrochim Acta 191:716–723. https://doi.org/10.1016/j.electacta.2016.01.106

    Article  CAS  Google Scholar 

  42. Yoon S-B, Jegal J-P, Roh KC, Kim K-B (2014) Electrochemical impedance spectroscopic investigation of sodium ion diffusion in MnO 2 using a constant phase element active in desired frequency ranges. J Electrochem Soc 161:H207–H213. https://doi.org/10.1149/2.046404jes

    Article  CAS  Google Scholar 

  43. Rajagopal R, Ryu KS (2020) Morphologically engineered cactus-like MnO2 nanostructure as a high-performance electrode material for energy-storage applications. J Energy Storage 32:101880. https://doi.org/10.1016/j.est.2020.101880

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Lomonosov Moscow State University Program of Development for providing access to the TEM and XPS facilities.

Funding

The reported study was funded by the Russian Science Foundation (Project #21–43–00023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina A. Arkhipova.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1351 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipova, E.A., Ivanov, A.S., Maslakov, K.I. et al. Facile hydrothermal synthesis of α-MnO2 and δ-MnO2 for pseudocapacitor applications. Ionics 28, 3501–3509 (2022). https://doi.org/10.1007/s11581-022-04562-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04562-y

Keywords

Navigation