Skip to main content

Advertisement

Log in

Analytical modeling of Li-ion diffusion in a three-layer electrode-separator-electrode stack with time-dependent current

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li-ion diffusion in electrodes and separator plays a key role in determining the charge/discharge characteristics of a Li-ion cell. Past papers have analyzed solution-phase limitation diffusion in a Li-ion cell for constant current conditions. In the present work, an analytical model is presented for concentration diffusion under solution-phase limitation in a three-layer structure under arbitrary, time-dependent current conditions that may be encountered in practical scenarios. The eigenvalue-based solution is shown to agree well with numerical simulations and may be suitable for implementation in practical battery management systems since only a few eigenvalues are shown to offer excellent accuracy. Computed concentration distributions are analyzed for sinusoidal and step function current profiles. The impact of electrode porosities on concentration distribution is also investigated. This work improves the theoretical understanding of diffusion in Li-ion cells and offers practical tools for modeling and optimization of electrochemical energy conversion and storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data and material are available upon request from the corresponding author.

Code availability

Code is available upon request from the corresponding author.

Abbreviations

Brugg :

Bruggeman coefficient

c i :

Concentration in region i (mol m−3)

c i,in :

Initial concentration (mol m−3)

C i :

Dimensionless concentration in region i

C i,in :

Dimensionless initial concentration in region i

c 0 :

Reference concentration (mol m-3)

D :

Diffusion coefficient of lithium ions in the electrolyte (m2 s−1)

D eff,i :

Effective diffusion coefficient of lithium ions in each layer (m2 s−1)

F :

Faraday’s constant (C mol−1)

i app :

Applied current density (A m−2)

J i :

Dimensionless flux density in region i

K :

Ratio of electrode thicknesses

L :

Total width of cell (m)

t :

Time (s)

t + :

Transference number

x :

Position (m)

ε i :

Porosity in region i

γ i :

Dimensionless position at the interface i

λ n :

Eigenvalue

τ :

Dimensionless time

ξ :

Dimensionless position

References

  1. Doyle M, Newman J (1997) Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process. J Appl Electrochem 27:846–856. https://doi.org/10.1023/A:1018481030499

    Article  CAS  Google Scholar 

  2. Jokar A, Rajabloo B, Désilets M, Lacroix M (2016) Review of simplified pseudo-two-dimensional models of lithium-ion batteries. J Power Sources 327:44–55. https://doi.org/10.1016/j.jpowsour.2016.07.036

    Article  CAS  Google Scholar 

  3. Zhang J, Lee J (2011) A review on prognostics and health monitoring of Li-ion battery. J Power Sources 196:6007–6014. https://doi.org/10.1016/j.jpowsour.2011.03.101

    Article  CAS  Google Scholar 

  4. Ramadesigan V, Northrop PWC, De S, Santhanagopalan S, Braatz RD, Subramanian VR (2012) Modeling and simulation of lithium-ion batteries from a systems engineering perspective. J Electrochem Soc 159. https://doi.org/10.1149/2.018203jes

  5. Seaman A, Dao TS, McPhee J (2014) A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. J Power Sources 256:410–423. https://doi.org/10.1016/j.jpowsour.2014.01.057

    Article  CAS  Google Scholar 

  6. Rahman MA, Anwar S, Izadian SA (2016) Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method. J Power Sources 307:86–97. https://doi.org/10.1016/j.jpowsour.2015.12.083

    Article  CAS  Google Scholar 

  7. Botte GG, Subramanian VR, White RE (2000) Mathematical modeling of secondary lithium batteries. Electrochim Acta 45:2595–2609. https://doi.org/10.1016/s0013-4686(00)00340-6

    Article  CAS  Google Scholar 

  8. Doyle M, Fuller TF, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140:1526–1533. https://doi.org/10.1149/1.2221597

    Article  CAS  Google Scholar 

  9. Fuller TF, Doyle M, Newman J (1994) Simulation and optimization of the dual lithium ion insertion cell. J Electrochem Soc 141:1–10. https://doi.org/10.1149/1.2054684

  10. Doyle M, Fuller TF, Newman J (1994) The importance of the lithium ion transference number in lithium/polymer cells. Electrochim Acta 39:2073–2081. https://doi.org/10.1016/0013-4686(94)85091-7

    Article  CAS  Google Scholar 

  11. Doyle M, Newman J (1995) The use of mathematical modeling in the design of lithium/ polymer battery systems. Electrochim Acta 40:2191–2196. https://doi.org/10.1016/0013-4686(95)00162-8

    Article  CAS  Google Scholar 

  12. Newman J, Thomas-Alyea KE (2004) Electrochemical systems, 3rd edn. John Wiley & Sons

    Google Scholar 

  13. Fuller, TF, Newman, JA (1989) Concentrated solution theory model of transport in solid–polymer–electrolyte fuel cells. In: R. E. White and A. J (eds.), Proceedings of The Symposium on Fuel Cells. Appleby, Proc. Vol. 89-14. Electrochem Soc Proc

  14. Lamorgese A, Mauri R, Tellini B (2018) Electrochemical-thermal P2D aging model of a LiCoO2/graphite cell: Capacity fade simulations. Journal of Energy Storage 20:289–297. https://doi.org/10.1016/j.est.2018.08.011

    Article  Google Scholar 

  15. Murbach MD, Schwartz DT (2017) Extending Newman’s pseudo-two-dimensional lithium-ion battery impedance simulation approach to include the nonlinear harmonic response. J Electrochem Soc 164:E3311. https://doi.org/10.1149/2.0301711jes

    Article  CAS  Google Scholar 

  16. Subramanian VR, Boovaragavan V, Ramadesigan V, Arabandi M (2009) Mathematical model reformulation for lithium-ion battery simulations: galvanostatic boundary conditions. J Electrochem Soc 156:A260. https://doi.org/10.1149/1.3065083

    Article  CAS  Google Scholar 

  17. Ramadesigan V, Boovaragavan V, Subramanian VR (2009) Efficient reformulation of solid-phase diffusion in physics-based lithium-ion battery models, ECS Transactions. https://doi.org/10.1149/1.3115314

    Book  Google Scholar 

  18. Rahimian SK, Rayman S, White RE (2013) Extension of physics-based single particle model for higher charge–discharge rates. J Power Sources 224:180–194. https://doi.org/10.1016/j.jpowsour.2012.09.084

    Article  CAS  Google Scholar 

  19. Guo M, White RE (2012) An approximate solution for solid-phase diffusion in a spherical particle in physics-based Li-ion cell models. J Power Sources 198:322–328. https://doi.org/10.1016/j.jpowsour.2011.08.096

    Article  CAS  Google Scholar 

  20. Santhanagopalan S, Guo Q, Ramadass P, White RE (2006) Review of models for predicting the cycling performance of lithium ion batteries. J Power Sources 156:620–628. https://doi.org/10.1016/j.jpowsour.2005.05.070

    Article  CAS  Google Scholar 

  21. Subramanian VR, Tapriyal D, White RE (2004) A boundary condition for porous electrodes. Electrochem Solid-State Lett 7:A259–A263. https://doi.org/10.1149/1.1773751

    Article  CAS  Google Scholar 

  22. Guduru A, Northrop PW, Jain S, Crothers AC, Marchant TR, Subramanian VR (2012) Analytical solution for electrolyte concentration distribution in lithium-ion batteries. J Appl Electrochem 42:189–199. https://doi.org/10.1007/s10800-012-0394-4

    Article  CAS  Google Scholar 

  23. Johan MR, Arof AK (2007) Modeling of electrochemical intercalation of lithium into a LiMn2O4 electrode using Green function. J Power Sources 170:490–494. https://doi.org/10.1016/j.jpowsour.2007.03.069

    Article  CAS  Google Scholar 

  24. Johan MR, Arof AK (2004) Analytical solution to the material balance equation by integral transform for different cathode geometries. Ionics. 10:405–414. https://doi.org/10.1007/bf02378001

    Article  CAS  Google Scholar 

  25. Ali SH, Hussin A, Arof A (2002) Short- and long-time solutions for material balance equation in lithium-ion batteries by Laplace transform. J Power Sources 112:435–442. https://doi.org/10.1016/s0378-7753(02)00420-2

    Article  Google Scholar 

  26. Smith KA, Rahn CD, Wang C-Y (2008) Model Order Reduction of 1D diffusion systems via residue grouping. J Dyn Syst Meas Control 130(011012):1–8. https://doi.org/10.1115/1.2807068

    Article  Google Scholar 

  27. Subramanian VR, Ritter JA, White RE (2001) Approximate solutions for galvanostatic discharge of spherical particles I. Constant diffusion coefficient. J Electrochem Soc 148. https://doi.org/10.1149/1.1409397.

  28. Luo W, Lyu C, Wang L, Zhang L (2013) An approximate solution for electrolyte concentration distribution in physics-based lithium-ion cell models. Microelectron Reliab 53:797–804. https://doi.org/10.1016/j.microrel.2012.11.002

    Article  CAS  Google Scholar 

  29. Cai L, White RE et al (2009) J Electrochem Soc 156. https://doi.org/10.1149/1.3049347

  30. Carr EJ, Turner IW (2016) A semi-analytical solution for multilayer diffusion in a composite medium consisting of a large number of layers. Appl Math Model 40:7034–7050. https://doi.org/10.1016/j.apm.2016.02.041

    Article  Google Scholar 

  31. Choobineh L, Jain A (2015) An explicit analytical model for rapid computation of temperature field in a three-dimensional integrated circuit (3D IC). Int J Therm Sci 87:103–109. https://doi.org/10.1016/j.ijthermalsci.2014.08.012

    Article  Google Scholar 

  32. Rodrigo MR, Worthy AL (2016) Solution of multilayer diffusion problems via the Laplace transform. Aust J Math Anal Appl 444:475–502. https://doi.org/10.1016/j.jmaa.2016.06.042

    Article  Google Scholar 

  33. Hickson RI, Barry SI, Mercer GN (2009) Critical times in multilayer diffusion. Part 1: Exact solutions. Int J Heat Mass Transf 52:5776–5783. https://doi.org/10.1016/j.ijheatmasstransfer.2009.08.013

    Article  CAS  Google Scholar 

  34. Pérez Guerrero JS, Pontedeiro EM, van Genuchten MT, Skaggs TH (2013) Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions. Chem Eng J 221:487–491. https://doi.org/10.1016/j.cej.2013.01.095

    Article  CAS  Google Scholar 

  35. Carr EJ, March NG (2018) Semi-analytical solution of multilayer diffusion problems with time-varying boundary conditions and general interface conditions. Appl Math Comput 333:286–303. https://doi.org/10.1016/j.amc.2018.03.095

    Article  Google Scholar 

  36. Parhizi M, Pathak M, Jain A (2020) Analytical model based prediction of state-of-charge (SoC) of a Lithium-ion cell under time-varying charge/discharge currents. J Electrochem Soc 167(120544):1–10. https://doi.org/10.1149/1945-7111/abb34d

    Article  CAS  Google Scholar 

  37. Liu S (2006) An analytical solution to Li/Li insertion into a porous electrode. Solid State Ionics 177:53–58. https://doi.org/10.1016/j.ssi.2005.09.053

    Article  CAS  Google Scholar 

  38. Parhizi M, Jain A (2021) Analytical modeling of solution phase diffusion in porous composite electrodes under time-dependent flux boundary conditions using Green’s function method. Ionics. 27:213–224. https://doi.org/10.1007/s11581-020-03777-1

    Article  CAS  Google Scholar 

  39. Parhizi M, Jain A (2020) Analytical modeling of solid phase diffusion in single-layer and composite electrodes under time-dependent galvanostatic flux boundary condition. J Electrochem Soc 167:1–11. https://doi.org/10.1149/1945-7111/ab847c

    Google Scholar 

  40. Zhou L, Parhizi M, Jain A (2021) Theoretical analysis of transient solution phase concentration field in a porous composite electrode with time-dependent flux boundary condition. J Appl Electrochem 51:1241–1252. https://doi.org/10.1007/s10800-021-01573-x

    Article  CAS  Google Scholar 

  41. Krishnan G, Parhizi M, Pathak M, Jain A (2021) Solution phase limited diffusion modeling in a Li-ion cell subject to concentration-dependent pore wall flux. J Electrochem Soc 168:1–9. https://doi.org/10.1149/1945-7111/ac1cfb

    Google Scholar 

Download references

Funding

This material is based upon work supported by CAREER Award No. CBET-1554183 from the National Science Foundation. This research was also supported by the Key Project of Science of the Education Bureau of Henan Province (19B460005), the Special Project of Basic Scientific Research Operating Expenses of Henan Polytechnic University (NSFRF180427), and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

Long Zhou – Methodology, formal analysis, investigation, data curation, visualization; Mohammad Parhizi – Methodology, formal analysis, investigation, data curation, visualization; Manan Pathak – Conceptualization, methodology, visualization, funding acquisition; Ankur Jain – conceptualization, methodology, supervision, project administration, visualization, funding acquisition. All authors contributed towards writing original draft and review/editing.

Corresponding author

Correspondence to Ankur Jain.

Ethics declarations

Conflict of interest/Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Parhizi, M., Pathak, M. et al. Analytical modeling of Li-ion diffusion in a three-layer electrode-separator-electrode stack with time-dependent current. Ionics 28, 1143–1155 (2022). https://doi.org/10.1007/s11581-021-04332-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04332-2

Keywords

Navigation