Skip to main content

Advertisement

Log in

Composite V3S4@rGO nanowires as a high-performance anode material for lithium-/sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A composite of V3S4 nanowires and reduced graphene oxide (rGO) is synthesized by using a simple hydrothermal method followed by vulcanization. The rGO can effectively alleviate the volume expansion of V3S4, improve the electrical conductivity, and accelerate the ion mobility during the cycling process. When used as electrode material, the V3S4@rGO composite exhibits excellent electrochemical performance in both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). At a current density of 2 A g−1, the reversible capacity of V3S4@rGO electrode can exhibit 544.8 mAh g−1 in the first cycle and 57.4% (312.5 mAh g−1) was retained after 1000 cycles in LIBs, it also shows the initial capacity of 429.7 mAh g−1 and 54.2% (232.8 mAh g−1) was remained after 2000 cycles in SIBs. The excellent electrochemical performance is attributed to the existence of the special rGO layer on the surface of the material, which can effectively ensure the structural stability of V3S4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun X (2016) Recent Developments and Understanding of Novel Mixed Transition-Metal Oxides as Anodes in Lithium Ion Batteries. Advanced Energy Materials 6 (8). https://doi.org/10.1002/aenm.201502175

  2. Wang X, Kim H-M, Xiao Y, Sun Y-K (2016) Nanostructured metal phosphide-based materials for electrochemical energy storage. J Mater Chem A 4(39):14915–14931. https://doi.org/10.1039/c6ta06705k

    Article  CAS  Google Scholar 

  3. Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen ZX (2018) Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Adv Sci (Weinh) 5(1):1700322. https://doi.org/10.1002/advs.201700322

    Article  CAS  Google Scholar 

  4. Wu N, Miao D, Zhou X, Zhang L, Liu G, Guo D, Liu X (2019) V3S4 Nanosheets Anchored on N, S Co-Doped Graphene with Pseudocapacitive Effect for Fast and Durable Lithium Storage. Nanomaterials (Basel) 9 (11). https://doi.org/10.3390/nano9111638

  5. Liu X, Chao D, Su D, Liu S, Chen L, Chi C, Lin J, Shen ZX, Zhao J, Mai L, Li Y (2017) Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage. Nano Energy 37:108–117. https://doi.org/10.1016/j.nanoen.2017.04.051

    Article  CAS  Google Scholar 

  6. Li Y, Mao H, Zheng C, Wang J, Che Z, Wei M (2020) Compositing reduced graphene oxide with interlayer spacing enlarged MoS2 for performance enhanced sodium-ion batteries. Journal of Physics and Chemistry of Solids 136https://doi.org/10.1016/j.jpcs.2019.109163

  7. Zheng R, Haoxiang Yu, Zhang X, Ding Y, Xia M, Cao K, Shu J, Alexandru Vlad S-L (2021) A TiSe2-Graphite Dual Ion Battery: Fast Na-Ion Insertion and Excellent Stability. Angew Chem Int Ed 34:18430–18437. https://doi.org/10.1002/anie.202105439

    Article  CAS  Google Scholar 

  8. Wang J, Luo N, Wu J, Huang S, Yu L, Wei M (2019) Hierarchical spheres constructed by ultrathin VS2 nanosheets for sodium-ion batteries. J Mater Chem A 7(8):3691–3696. https://doi.org/10.1039/c8ta11950c

    Article  CAS  Google Scholar 

  9. Wu F, Jiang Y, Ye Z, Huang Y, Wang Z, Li S, Mei Y, Xie M, Li L, Chen R (2019) A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J Mater Chem A 7(3):1315–1322. https://doi.org/10.1039/c8ta11419f

    Article  CAS  Google Scholar 

  10. Li Z, Zheng Y, Liu Q, Wang Y, Wang D, Li Z, Zheng P, Liu Z (2020) Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries. J Mater Chem A 8(37):19113–19132. https://doi.org/10.1039/d0ta06533a

    Article  CAS  Google Scholar 

  11. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  12. Salavati M, Rabczuk T (2019) Application of highly stretchable and conductive two-dimensional 1T VS2 and VSe2 as anode materials for Li-, Na- and Ca-ion storage. Comput Mater Sci 160:360–367. https://doi.org/10.1016/j.commatsci.2019.01.018

    Article  CAS  Google Scholar 

  13. Yue L, Zhao H, Wu Z, Liang J, Lu S, Chen G, Gao S, Zhong B, Guo X, Sun X (2020) Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. J Mater Chem A 8(23):11493–11510. https://doi.org/10.1039/d0ta03963b

    Article  CAS  Google Scholar 

  14. Kim H, Hong J, Park Y-U, Kim J, Hwang I, Kang K (2015) Energy Storage: Sodium Storage Behavior in Natural Graphite using Ether-based Electrolyte Systems. Adv Func Mater 25(5):652. https://doi.org/10.1002/adfm.201570029

    Article  Google Scholar 

  15. Kim H, Hong J, Yoon G, Kim H, Park K-Y, Park M-S, Yoon W-S, Kang K (2015) Sodium intercalation chemistry in graphite. Energy Environ Sci 8(10):2963–2969. https://doi.org/10.1039/c5ee02051d

    Article  CAS  Google Scholar 

  16. Yun Q, Lu Q, Zhang X, Tan C, Zhang H (2018) Three-Dimensional Architectures Constructed from Transition-Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angew Chem Int Ed Engl 57(3):626–646. https://doi.org/10.1002/anie.201706426

    Article  CAS  PubMed  Google Scholar 

  17. Qin A, Wu H, Chen J, Li T, Chen S, Zhang D, Xu F (2019) Constructing hyperbranched polymers as a stable elastic framework for copper sulfide nanoplates for enhancing sodium-storage performance. Nanoscale 11(15):7188–7198. https://doi.org/10.1039/c9nr00371a

    Article  CAS  PubMed  Google Scholar 

  18. Dong C, Liang J, He Y, Li C, Chen X, Guo L, Tian F, Qian Y, Xu L (2018) NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries. ACS Nano 12(8):8277–8287. https://doi.org/10.1021/acsnano.8b03541

    Article  CAS  PubMed  Google Scholar 

  19. Fan H-H, Li H-H, Guo J-Z, Zheng Y-P, Huang K-C, Fan C-Y, Sun H-Z, Li X-F, Wu X-L, Zhang J-P (2018) Target construction of ultrathin graphitic carbon encapsulated FeS hierarchical microspheres featuring superior low-temperature lithium/sodium storage properties. J Mater Chem A 6(17):7997–8005. https://doi.org/10.1039/c8ta01392f

    Article  CAS  Google Scholar 

  20. Gao X, Wang B, Zhang Y, Liu H, Liu H, Wu H, Dou S (2019) Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater 16:46–55. https://doi.org/10.1016/j.ensm.2018.04.027

    Article  Google Scholar 

  21. Li Y, Chang K, Shangguan E, Guo D, Zhou W, Hou Y, Tang H, Li B, Chang Z (2019) Powder exfoliated MoS2 nanosheets with highly monolayer-rich structures as high-performance lithium-/sodium-ion-battery electrodes. Nanoscale 11(4):1887–1900. https://doi.org/10.1039/c8nr08511k

    Article  CAS  PubMed  Google Scholar 

  22. Zhu H, Tingting Liu Lu, Peng WY, Yang C (2021) A Compact Bi2WO6 microflowers anode for potassium-ion storage: Taming a sequential phase evolution toward stable electrochemical cycling. Nano Energy 82:105784. https://doi.org/10.1016/j.nanoen.2021.105784

    Article  CAS  Google Scholar 

  23. Ni S, Liu J, Chao D, Mai L (2019) Vanadate‐Based Materials for Li‐Ion Batteries: The Search for Anodes for Practical Applications. Advanced Energy Materials 9 (14). https://doi.org/10.1002/aenm.201803324

  24. Liu Q, Yao W, Zhan L, Wang Y, Zhu Y-A (2018) V3S4 nanoparticles anchored on three-dimensional porous graphene gel for superior lithium storage. Electrochim Acta 261:35–41. https://doi.org/10.1016/j.electacta.2017.10.137

    Article  CAS  Google Scholar 

  25. Liu Y, Sun Z, Sun X, Lin Y, Tan K, Sun J, Liang L, Hou L, Yuan C (2020) Construction of Hierarchical Nanotubes Assembled from Ultrathin V3S4@C Nanosheets towards Alkali-Ion Batteries with Ion-Dependent Electrochemical Mechanisms. Angew Chem Int Ed Engl 59(6):2473–2482. https://doi.org/10.1002/anie.201913343

    Article  CAS  PubMed  Google Scholar 

  26. Xiong X, Wang G, Lin Y, Wang Y, Ou X, Zheng F, Yang C, Wang J-H, Liu M (2016) Enhancing Sodium Ion Battery Performance by Strongly Binding Nanostructured Sb2S3 on Sulfur-Doped Graphene Sheets. ACS Nano 10(12):10953–10959. https://doi.org/10.1021/acsnano.6b05653

    Article  CAS  PubMed  Google Scholar 

  27. Tang T, Zhang T, Zhao L, Zhang B, Li W, Xu J, Li T, Zhang L, Qiu H, Hou Y (2020) Multifunctional V3S4-nanowire/graphene composites for high performance Li-S batteries. Sci China Mater 63(10):1910–1919. https://doi.org/10.1007/s40843-020-1313-6

    Article  CAS  Google Scholar 

  28. Cheng X, Ran F, Huang Y, Zheng R, Yu H, Shu J, Xie Y, He YB (2021) Insight into the Synergistic Effect of N, S Co‐Doping for Carbon Coating Layer on Niobium Oxide Anodes with Ultra‐Long Life. Advanced Functional Materials 31 (19). https://doi.org/10.1002/adfm.202100311

  29. Li B, Rooney DW, Zhang N, Sun K (2013) An in situ ionic-liquid-assisted synthetic approach to iron fluoride/graphene hybrid nanostructures as superior cathode materials for lithium ion batteries. ACS Appl Mater Interfaces 5(11):5057–5063. https://doi.org/10.1021/am400873e

    Article  CAS  PubMed  Google Scholar 

  30. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131. https://doi.org/10.1016/j.nanoen.2011.11.001

    Article  CAS  Google Scholar 

  31. Liu X, Li L, Li G (2019) Partial surface phase transformation of Li3VO4 that enables superior rate performance and fast lithium-ion storage. Tungsten 1(4):276–286. https://doi.org/10.1007/s42864-019-00028-3

    Article  Google Scholar 

  32. Li H, Tay RY, Tsang SH, Liu W, Teo EHT (2015) Reduced Graphene Oxide/Boron Nitride Composite Film as a Novel Binder-Free Anode for Lithium Ion Batteries with Enhanced Performances. Electrochim Acta 166:197–205. https://doi.org/10.1016/j.electacta.2015.03.109

    Article  CAS  Google Scholar 

  33. Kong S, Jin Z, Liu H, Wang Y (2014) Morphological Effect of Graphene Nanosheets on Ultrathin CoS Nanosheets and Their Applications for High-Performance Li-Ion Batteries and Photocatalysis. J Phys Chem C 118(44):25355–25364. https://doi.org/10.1021/jp508698q

    Article  CAS  Google Scholar 

  34. Sun L, Wang K, Li N, Zhang J, Guo X, Liu X (2020) Multilayered structure of N-carbonenvelopediron oxide/graphene nanocomposites as an improved anode for Li-ion battery. Chin Chem Lett 31(9):2333–2338. https://doi.org/10.1016/j.cclet.2020.02.006

    Article  CAS  Google Scholar 

  35. Xu X, Ji S, Gu M, Liu J (2015) In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries. ACS Appl Mater Interfaces 7(37):20957–20964. https://doi.org/10.1021/acsami.5b06590

    Article  CAS  PubMed  Google Scholar 

  36. Lv W, Li Z, Deng Y, Yang Q-H, Kang F (2016) Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Mater 2:107–138. https://doi.org/10.1016/j.ensm.2015.10.002

    Article  Google Scholar 

  37. Xu Z, Zhang Y, Wang Y, Zhan L (2018) Flower-like nanostructured V3S4 grown on three-dimensional porous graphene aerogel for efficient oxygen reduction reaction. Appl Surf Sci 450:348–355. https://doi.org/10.1016/j.apsusc.2018.04.163

    Article  CAS  Google Scholar 

  38. Wu D, Zhang W, Feng Y, Ma J (2020) Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A 8(5):2618–2626. https://doi.org/10.1039/c9ta12859j

    Article  CAS  Google Scholar 

  39. Tang Z, Song Y, He X, Yang J (2012) One-step approach towards graphitic mesoporous carbon with a narrow pore size distribution. Mater Lett 89:330–332. https://doi.org/10.1016/j.matlet.2012.08.105

    Article  CAS  Google Scholar 

  40. Tao G, Zhang L, Chen L, Cui X, Hua Z, Wang M, Wang J, Chen Y, Shi J (2015) N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon 86:108–117. https://doi.org/10.1016/j.carbon.2014.12.102

    Article  CAS  Google Scholar 

  41. Oka Y, Kosuge K, Kachi S (1978) Ordered-disorder transition of the metal vacancies in the vanadium-sulfur system. I. An experimental study. J Solid State Chem 23:11–18. https://doi.org/10.1016/0022-4596(78)90049-X

    Article  CAS  Google Scholar 

  42. Balamurugan J, Karthikeyan G, Thanh TD, Kim NH, Lee JH (2016) Facile synthesis of vanadium nitride/nitrogen-doped graphene composite as stable high performance anode materials for supercapacitors. J Power Sources 308:149–157. https://doi.org/10.1016/j.jpowsour.2016.01.071

    Article  CAS  Google Scholar 

  43. Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R (2004) Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J Electron Spectrosc Relat Phenom 135(2–3):167–175. https://doi.org/10.1016/j.elspec.2004.03.004

    Article  CAS  Google Scholar 

  44. Liu G, Cui J, Luo R, Liu Y, Huang X, Wu N, Jin X, Chen H, Tang S, Kim J-K, Liu X (2019) 2D MoS2 grown on biomass-based hollow carbon fibers for energy storage. Appl Surf Sci 469:854–863. https://doi.org/10.1016/j.apsusc.2018.11.067

    Article  CAS  Google Scholar 

  45. Wang L, Hu L, Yang W, Liang D, Liu L, Liang S, Yang C, Fang Z, Dong Q, Deng C (2019) N/S-Co-Doped Porous Carbon Sheets Derived from Bagasse as High-Performance Anode Materials for Sodium-Ion Batteries. Nanomaterials (Basel) 9 (9). https://doi.org/10.3390/nano9091203

  46. Zhou Y, Tian J, Xu H, Yang J, Qian Y (2017) VS4 nanoparticles rooted by a-C coated MWCNTs as an advanced anode material in lithium ion batteries. Energy Storage Mater 6:149–156. https://doi.org/10.1016/j.ensm.2016.10.010

    Article  Google Scholar 

  47. Yang G, Wang H, Zhang B, Foo S, Ma M, Cao X, Liu J, Ni S, Srinivasan M, Huang Y (2019) Superior Li-ion storage of VS4 nanowires anchored on reduced graphene. Nanoscale 11(19):9556–9562. https://doi.org/10.1039/c9nr01953g

    Article  CAS  PubMed  Google Scholar 

  48. Yue J, Gu X, Jiang X, Chen L, Wang N, Yang J, Ma X (2015) Coaxial Manganese Dioxide@N-doped Carbon Nanotubes as Superior Anodes for Lithium Ion Batteries. Electrochim Acta 182:676–681. https://doi.org/10.1016/j.electacta.2015.09.150

    Article  CAS  Google Scholar 

  49. Zhou J, Qin J, Zhang X, Shi C, Liu E, Li J, Zhao N, He C (2015) 2D Space-Confined Synthesis of Few-Layer MoS2 Anchored on Carbon Nanosheet for Lithium-Ion Battery Anode. ACS Nano 9(4):3837–3848. https://doi.org/10.1021/nn506850e

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Y, Wang N, Lu Z, Xue P, Liu Y, Zhai Y, Tang B, Guo M, Qin L, Bai Z (2019) Hierarchical assembly and superior lithium/sodium storage properties of a flowerlike C/SnS@C nanocomposite. Electrochim Acta 296:891–900. https://doi.org/10.1016/j.electacta.2018.11.102

    Article  CAS  Google Scholar 

  51. Wu C, Ou JZ, He F, Ding J, Luo W, Wu M, Zhang H (2019) Three-dimensional MoS2/Carbon sandwiched architecture for boosted lithium storage capability. Nano Energy 65https://doi.org/10.1016/j.nanoen.2019.104061

  52. Gao S, Shi G, Fang H (2016) Impact of cation-pi interactions on the cell voltage of carbon nanotube-based Li batteries. Nanoscale 8(3):1451–1455. https://doi.org/10.1039/c5nr06456b

    Article  CAS  PubMed  Google Scholar 

  53. Li J, Li J, Yan D, Hou S, Xu X, Lu T, Yao Y, Mai W, Pan L (2018) Design of pomegranate-like clusters with NiS2 nanoparticles anchored on nitrogen-doped porous carbon for improved sodium ion storage performance. J Mater Chem A 6(15):6595–6605. https://doi.org/10.1039/c8ta00557e

    Article  CAS  Google Scholar 

  54. Cao D, Yao Z, Liu J, Zhang J, Li C (2018) H-Nb2O5 wired by tetragonal tungsten bronze related domains as high-rate anode for Li-ion batteries. Energy Storage Mater 11:152–160. https://doi.org/10.1016/j.ensm.2017.10.005

    Article  Google Scholar 

  55. Lu Z, Wang N, Zhang Y, Xue P, Guo M, Tang B, Xu X, Wang W, Bai Z, Dou S (2018) Metal-Organic Framework-Derived Sea-Cucumber-like FeS2@C Nanorods with Outstanding Pseudocapacitive Na-Ion Storage Properties. ACS Appl Energy Mater 1(11):6234–6241. https://doi.org/10.1021/acsaem.8b01239

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (Grant No. 52064035), and the Key Research and Development Program of Gansu Province (21YF5GA078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuliang Zhu.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, Y., Meng, Y. et al. Composite V3S4@rGO nanowires as a high-performance anode material for lithium-/sodium-ion batteries. Ionics 27, 5067–5077 (2021). https://doi.org/10.1007/s11581-021-04295-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04295-4

Keywords

Navigation