Skip to main content

Advertisement

Log in

Indium-based MOFs and carbon nanotube embedded efficient cathodes for high-performance lithium-sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) exhibit great potential for lithium-sulfur (Li–S) batteries because of their unique characteristics such as the high surface area, the precise structure, and the tunable porous environment. However, their low binding energy with sulfur and poor absorbability of polysulfides leads to the “shuttle effect,” reducing the stability of MOFs. With strong bonding ability to sulfur, indium-based MOFs, in which the indium (In) shows the Lewis acid character, can form the stable chemical bonds of In-S. Based on it, we used the indium-based MOF-CPM-200 as a carrier, combined with the conductive multi-walled carbon nanotubes (CNT) and sulfur to construct the composite cathode material of CPM-200/CNT@S. The unique composite structure for cathode materials of Li–S batteries can inhibit the “shuttle effect” and enhance conductivity. The initial discharge capacity of the CPM-200/CNT@S can reach as high as 1400 mAh∙g−1 and maintain a capacity of about 840 mAh∙g−1 after 100 charge–discharge cycles at 0.1 C, the coulombic efficiency approaches 100%. This work offers a new strategy for constructing the MOFs-based cathode materials for Li–S batteries with high performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jiang H, Liu X-C, Wu Y, Shu Y, Gong X, Ke F-S et al (2018) Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew Chem Int Edit 57:3916–3921

    Article  CAS  Google Scholar 

  2. Qi W, Li Y, Li H, Wayne SW, Lin X (2019) The development and numerical verification of a compromised real time optimal control algorithm for hybrid electric vehicle. J Power Sources 443:227272

  3. Seh ZW, Wang H, Hsu P-C, Zhang Q, Li W, Zheng G et al (2014) Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes. Energy Environ Sci 7:672–676

  4. Liu C, Xiang M, Xiao J, Ma S, Zeng Y, Li X et al (2020) Hollow V2O5 nanospheres wrapped by activated carbon to confine polysulfides for lithium sulfur battery. Ionics 26:5435–5443

    Article  CAS  Google Scholar 

  5. Cho C-S, Chang J-Y, Li C-C (2020) Highly symmetric gigaporous carbon microsphere as conductive host for sulfur to achieve high areal capacity for lithium-sulfur batteries. J Power Sources 451: 227818

  6. Liu M, Ye F, Li W, Li H, Zhang Y (2016) Chemical routes toward long-lasting lithium/sulfur cells. Nano Res 9:94–116

    Article  CAS  Google Scholar 

  7. Zhou X, Tian J, Hu J, Li C (2018) High rate magnesium-sulfur battery with improved cyclability based on metal-organic framework derivative carbon host. Adv Mater 30:1704166

  8. Hong X-J, Tang X-Y, Wei Q, Song C-L, Wang S-Y, Dong R-F et al (2018) Efficient encapsulation of small S24 molecules in MOF-derived flowerlike nitrogen-doped microporous carbon nanosheets for high-performance Li-S batteries. Acs Appl Mater Inter 10:9435–9443

    Article  CAS  Google Scholar 

  9. Li J, Zhang L, Qin F, Hong B, Xiang Q, Zhang K et al (2019) ZrO(NO3)(2) as a functional additive to suppress the diffusion of polysulfides in lithium - sulfur batteries. J Power Sources 442:227232

  10. Jie L (2019) Hierarchically constructed TiO2 spheres as efficient polysulfide barrier for high-performance Li-S battery. Int J Electrochem Sci 14:5483–5490

  11. Zhang H, Zhao W, Zou M, Wang Y, Chen Y, Xu L et al (2018) 3D, Mutually embedded MOF@Carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv Energy Mater 8:1800013

  12. Pu Y, Wu W, Liu J, Liu T, Ding F, Zhang J et al (2018) A defective MOF architecture threaded by interlaced carbon nanotubes for high-cycling lithium-sulfur batteries. Rsc Adv 8:18604–18612

    Article  CAS  Google Scholar 

  13. Xu J, Zhang W, Chen Y, Fan H, Su D, Wang G (2018) MOF-derived porous N-Co3O4@N–C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium–sulfur batteries. J Mater Chem A 6:2797–2807

    Article  CAS  Google Scholar 

  14. Leng S, Chen C, Liu J, Wang S, Yang J, Shan S et al (2019) Optimized sulfur-loading in nitrogen-doped porous carbon for high-capacity cathode of lithium–sulfur batteries. Appl Surf Sci 487:784–792

    Article  CAS  Google Scholar 

  15. Yang Y, Wang S, Zhang L, Deng Y, Xu H, Qin X et al (2019) CoS-interposed and Ketjen black-embedded carbon nanofiber framework as a separator modulation for high performance Li-S batteries. Chem Eng J 369:77–86

    Article  CAS  Google Scholar 

  16. Feng Y, Zhang Y, Du G, Zhang J, Liu M, Qu X (2018) Li2S–Embedded copper metal–organic framework cathode with superior electrochemical performance for Li–S batteries. New J Chem 42:13775–13783

    Article  CAS  Google Scholar 

  17. Yang X, Yan N, Zhou W, Zhang H, Li X, Zhang H (2015) Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal–organic framework for high performance lithium–sulfur batteries. J Mater Chem A 3:15314–15323

    Article  CAS  Google Scholar 

  18. Zhong Y, Xu X, Liu Y, Wang W, Shao Z (2018) Recent progress in metal–organic frameworks for lithium–sulfur batteries. Polyhedron 155:464–484

    Article  CAS  Google Scholar 

  19. Liu B, Bo R, Taheri M, Di Bernardo I, Motta N, Chen H et al (2019) Metal-organic frameworks/conducting polymer hydrogel integrated three-dimensional free-standing monoliths as ultrahigh loading Li-S battery electrodes. Nano Lett 19:4391–4399

    Article  CAS  Google Scholar 

  20. Shrivastav V, Sundriyal S, Goel P, Kaur H, Tuteja SK, Vikrant K et al (2019) Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. Coord Chem Rev 393:48–78

    Article  CAS  Google Scholar 

  21. Balach J, Linnemann J, Jaumann T, Giebeler L (2018) Metal-based nanostructured materials for advanced lithium-sulfur batteries. J Mater Chem A 6:23127–23168

    Article  CAS  Google Scholar 

  22. Lee DH, Ahn JH, Park M-S, Eftekhari A, Kim D-W (2018) Metal-organic framework/carbon nanotube-coated polyethylene separator for improving the cycling performance of lithium-sulfur cells. Electrochim Acta 283:1291–1299

    Article  CAS  Google Scholar 

  23. Zheng J, Tian J, Wu D, Gu M, Xu W, Wang C et al (2014) Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett 14:2345–2352

    Article  CAS  Google Scholar 

  24. Baumann AE, Aversa GE, Roy A, Falk ML, Bedford NM, Thoi VS (2018) Promoting sulfur adsorption using surface Cu sites in metal-organic frameworks for lithium sulfur batteries. J Mater Chem A 6:4811–4821

    Article  CAS  Google Scholar 

  25. Zhai QG, Bu X, Mao C, Zhao X, Feng P (2016) Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks. J Am Chem Soc 138:2524–2527

    Article  CAS  Google Scholar 

  26. Yin X, Zhang Y, Fang Z, Xu Z, Zhu W (2012) Hydrothermal synthesis of CeO2nanorods using a strong base–weak acid salt as the precipitant. Nanosci Methods 1:115–122

    Article  CAS  Google Scholar 

  27. Chen X, Peng L, Yuan L, Zeng R, Xiang J, Chen W et al (2019) Facile synthesis of Li2S@C composites as cathode for Li–S batteries. J Energy Chem 37:111–116

    Article  Google Scholar 

  28. Xu G, Zuo Y, Huang B (2018) Metal-organic framework-74-Ni/carbon nanotube composite as sulfur host for high performance lithium-sulfur batteries. J Electroanal Chem 830:43–49

    Article  Google Scholar 

  29. Chen T, Zhang Z, Cheng B, Chen R, Hu Y, Ma L et al (2017) Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J Am Chem Soc 139:12710–12715

    Article  CAS  Google Scholar 

  30. Zhang X, Dong P, Lee J-I, Gray JT, Cha Y-H, Ha S et al (2019) Enhanced cycling performance of rechargeable Li–O2 batteries via LiOH formation and decomposition using high-performance MOF-74@CNTs hybrid catalysts. Energy Stor Mater 17:167–177

    Article  CAS  Google Scholar 

  31. Zheng Y, Zheng S, Xue H, Pang H (2019) Metal-organic frameworks for lithium-sulfur batteries. J Mater Chem A 7:3469–3491

    Article  CAS  Google Scholar 

  32. Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG et al (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134:18510–18513

    Article  CAS  Google Scholar 

  33. Li Z, Yin L (2015) Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance. ACS Appl Mater Interfaces 7:4029–4038

    Article  CAS  Google Scholar 

  34. Yue Y, Guo B, Qiao Z-A, Fulvio PF, Chen J, Binder AJ et al (2014) Multi-wall carbon nanotube@zeolite imidazolate framework composite from a nanoscale zinc oxide precursor. Microporous Mesoporous Mater 198:139–143

    Article  CAS  Google Scholar 

  35. Xu T, Hou X, Liu S, Liu B (2018) One-step synthesis of magnetic and porous Ni@MOF-74(Ni) composite. Microporous Mesoporous Mater 259:178–183

    Article  CAS  Google Scholar 

  36. Geng X, Yi R, Lin X, Liu C, Sun Y, Zhao Y et al (2021) A high conductive TiC-TiO2/SWCNT/S composite with effective polysulfides adsorption for high performance Li-S batteries. J Alloy Compd 851:156793

  37. Bao W, Zhang Z, Qu Y, Zhou C, Wang X, Li J (2014) Confine sulfur in mesoporous metal–organic framework @ reduced graphene oxide for lithium sulfur battery. J Alloy Compd 582:334–340

    Article  CAS  Google Scholar 

  38. Battistoni C, Gastaldi L, Lapiccirella A, Mattogno G and Viticoli S (1986) Octahedral vs tetrahedral coordination of the co(II) ion in layer compounds: CoxZn1−xIn2S4(O⩽x⩽0.46) solid solution. J Phys Chem Solids 47:899–903

  39. Wu Q, Zhou X, Xu J, Cao F, Li C (2019) Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li-S batteries. J Energy Chem 38:94–113

    Article  Google Scholar 

  40. Zhao Z, Wang S, Liang R, Li Z, Shi Z, Chen G (2014) Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li–S batteries. J Mater Chem A 2:13509–13512

    Article  CAS  Google Scholar 

  41. Zhou J, Liu X, Zhou J, Zhao H, Lin N, Zhu L et al (2019) Fully integrated hierarchical double-shelled Co9S8@CNT nanostructures with unprecedented performance for Li-S batteries. Nanoscale Horiz 4:182–189

    Article  CAS  Google Scholar 

  42. Liu X-F, Guo X-Q, Wang R, Liu Q-C, Li Z-J, Zang S-Q et al (2019) Manganese cluster-based MOF as efficient polysulfide-trapping platform for high-performance lithium–sulfur batteries. J Mater Chem A 7:2838–2844

    Article  CAS  Google Scholar 

  43. Hou TZ, Xu WT, Chen X, Peng HJ, Huang JQ, Zhang Q (2017) Lithium bond chemistry in lithium-sulfur batteries. Angew Chem Int Ed Engl 56:8178–8182

    Article  CAS  Google Scholar 

  44. Ghanbari K, Roushani M, Soheyli E, Sahraei R (2019) An electrochemical tyrosinamide aptasensor using a glassy carbon electrode modified by N-acetyl-l-cysteine-capped Ag-In-S QDs. Mater Sci Eng C Mater Biol Appl 102:653–660

    Article  CAS  Google Scholar 

  45. Fang D, Wang Y, Qian C, Liu X, Wang X, Chen S et al (2019) Synergistic regulation of polysulfides conversion and deposition by MOF-derived hierarchically ordered carbonaceous composite for high-energy lithium-sulfur batteries. Adv Funct Mater 29:1900875

  46. Park GD, Jung DS, Lee J-K, Kang YC (2019) Pitch-derived yolk-shell-structured carbon microspheres as efficient sulfur host materials and their application as cathode material for Li-S batteries. Chem Eng J 373:382–392

    Article  CAS  Google Scholar 

  47. Li X, Sun Q, Liu J, Xiao B, Li R, Sun X (2016) Tunable porous structure of metal organic framework derived carbon and the application in lithium–sulfur batteries. J Power Sources 302:174–179

    Article  CAS  Google Scholar 

  48. Li C, Xi Z, Dong S, Ge X, Li Z, Wang C et al (2018) CNTs/MOFs-derived carbon/Al2(OH)2.76F3.24/S cathodes for high-performance lithium-sulfur batteries. Energy Storage Mater 12:341–51

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the National Natural Science Foundation of China (nos. 51202179, 51702256), Shaanxi Province (nos. 2013KJXX-57, 2018GY-166, 2019TD-019), Xi’an Key Laboratory of Clean Energy (no.2019219914SYS014CG03), the Natural Science Foundation of Xi’an (201805033YD11CG17(7)), and the Science Foundation of Shaanxi Provincial Department of Education (nos. 12JS060, 18JS058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Wang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, G., Deng, T., Jiao, X. et al. Indium-based MOFs and carbon nanotube embedded efficient cathodes for high-performance lithium-sulfur batteries. Ionics 27, 5115–5125 (2021). https://doi.org/10.1007/s11581-021-04281-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04281-w

Keywords

Navigation