Skip to main content

Advertisement

Log in

LiFePO4-covered silicon composite cathode with additional Li storage for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We prepared a composite of LiFePO4 (LFP)-covered silicon particles, C-LFP-Si, via a facile solvothermal process followed by calcination. LFP particles are grown on Si particles and contact closely with them due to the abundant oxygenic groups on the surface of Si. As a result, the Si particles are fully surrounded by LFP, producing a large amount of LFP-Si interfaces. The Si–O oxygenic groups at the interfaces serve as additional Li storage sites, thus resulting in extra capacity. When employed as a cathode for Li-ion batteries (LIBs), the composite possesses a very high reversible specific capacity of 186 mAh g−1 at the rate of 0.1 C, and a high capacity retention rate of 95% after 400 cycles at 1 C. Additionally, the composite also possesses a high specific energy of 618.8 Wh kg−1, much higher than the commercial LFP, and the full cell based on the C-LFP-Si composite cathode can bring a high-mass energy density of 273.1 Wh kg−1. Equally importantly, the fabrication of this structured composite of LFP and Si with large capacity is facile, together with the inherited stability feature, eco-friendliness, and low cost, making it promising in future practical large-scale producing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author under reasonable request.

Code availability

Not applicable.

References

  1. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J (2005) Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc 152:A607–A610

    Article  CAS  Google Scholar 

  2. Dominko R, Bele M, Goupil JM, Gaberscek M, Hanzel D, Arcon I, Jamnik J (2007) Wired porous cathode materials: a novel concept for synthesis of LiFePO4. Chem Mater 19:2960–2969

    Article  CAS  Google Scholar 

  3. Chen Z, Dahn J (2002) Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J Electrochem Soc 149:A1184–A1189

    Article  CAS  Google Scholar 

  4. Doeff MM, Wilcox JD, Yu R, Aumentado A, Marcinek M, Kostecki R (2008) Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites. J Solid State Electrochem 12:995–1001

    Article  CAS  Google Scholar 

  5. Wang Y, Wang Y, Hosono E, Wang K, Zhou H (2008) The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 47:7461–7465

    Article  CAS  Google Scholar 

  6. Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) Optimization of carbon coatings on LiFePO4. J Power Sources 163:180–184

    Article  CAS  Google Scholar 

  7. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152

    Article  CAS  Google Scholar 

  8. Meethong N, Kao YH, Speakman SA, Chiang YM (2009) Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties. Adv Funct Mater 19:1060–1070

    Article  CAS  Google Scholar 

  9. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Article  CAS  Google Scholar 

  10. Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S, Tarascon JM, Masquelier C (2008) Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat Mater 7:741–747

    Article  CAS  Google Scholar 

  11. Hsu KF, Tsay SY, Hwang BJ (2004) Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route. J Mater Chem 14:2690–2695

    Article  CAS  Google Scholar 

  12. Kim DH, Kim J (2006) Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid-State Lett 9:A439–A442

    Article  CAS  Google Scholar 

  13. Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F (2008) Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascademodel. Nat Mater 7:665–671

    Article  CAS  Google Scholar 

  14. Laffont L, Delacourt C, Gibot P, Wu MY, Kooyman P, Masquelier C, Tarascon JM (2006) Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem Mater 18:5520–5529

    Article  CAS  Google Scholar 

  15. Ellis B, Makahnouk W, Makimura Y, Toghill K, Nazar L (2007) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:749–753

    Article  CAS  Google Scholar 

  16. Nie Z, Ouyang C, Chen J, Zhong Z, Du Y, Liu D, Shi S, Lei M (2010) First principles study of Jahn-Teller effects in LixMnPO4. Solid State Commun 150:40–44

    Article  CAS  Google Scholar 

  17. Ong SP, Chevrier VL, Ceder G (2011) Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys Rev B 83:075112

  18. Choi D, Xiao J, Choi YJ, Hardy JS, Vijayakumar M, Bhuvaneswari M, Liu J, Xu W, Wang W, Yang Z (2011) Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries. Energy Environ Sci 4:4560–4566

    Article  CAS  Google Scholar 

  19. Yonemura M, Yamada A, Takei Y, Sonoyama N, Kanno R (2004) Comparative kinetic study of olivine LixMPO4 (M= Fe, Mn). J Electrochem Soc 151:A1352-1356

    Article  CAS  Google Scholar 

  20. Piper L, Quackenbush N, Sallis S, Scanlon D, Watson G, Nam K-W, Yang XQ, Smith K, Omenya F, Chernova N (2013) Elucidating the nature of pseudo Jahn-Teller distortions in LixMnPO4: combining density functional theory with soft and hard X-ray spectroscopy. J Phys Chem C 117:10383–10396

    Article  CAS  Google Scholar 

  21. Xu G, Liu Z, Zhang C, Cui G, Chen L (2015) Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J Mater Chem A 3:4092–4123

    Article  CAS  Google Scholar 

  22. Sun YK, Oh SM, Park HK, Scrosati B (2011) Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries. Adv Mater 23:5050–5054

    Article  CAS  Google Scholar 

  23. Sun C, Rajasekhara S, Goodenough JB, Zhou F (2011) Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J Am Chem Soc 133:2132–2135

    Article  CAS  Google Scholar 

  24. Hu LH, Wu FY, Lin CT, Khlobystov AN, Li LJ (2013) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4:1687

    Article  Google Scholar 

  25. Duan Y, Zhang B, Zheng J, Hu J, Wen J, Miller DJ, Yan P, Liu T, Guo H, Li W (2017) Excess Li-ion storage on reconstructed surfaces of nanocrystals to boost battery performance. Nano Lett 17:6018–6026

    Article  CAS  Google Scholar 

  26. Zhao Q, Zhang YZ, Meng Y, Wang YJ, Ou JK, Guo Y, Xiao D (2017) Phytic acid derived LiFePO4 beyond theoretical capacity as high-energy density cathode for lithium ion battery. Nano Energy 34:408–420

    Article  CAS  Google Scholar 

  27. Guo H, Song X, Zheng J, Pan F (2016) Excess lithium storage in LiFePO4-carbon interface by ball-milling. Funct Mater Lett 9:1650053

    Article  CAS  Google Scholar 

  28. Saikia D, Deka JR, Chou CJ, Lin CH, Yang YC, Kao HM (2019) Encapsulation of LiFePO4 nanoparticles into 3D interpenetrating ordered mesoporous carbon as a high-performance cathode for lithium-ion batteries exceeding theoretical capacity. ACS Appl Energy Mater 2:1121–1133

    Article  CAS  Google Scholar 

  29. Zhang X, Bi Z, He W, Yang G, Liu H, Yue Y (2014) Fabricating high-energy quantum dots in ultra-thin LiFePO4 nanosheets using a multifunctional high-energy biomolecule—ATP. Energy Environ Sci 7:2285–2294

    Article  CAS  Google Scholar 

  30. Zhang K, Lee JT, Li P, Kang B, Kim JH, Yi GR, Park JH (2015) Conformal coating strategy comprising N-doped carbon and conventional graphene for achieving ultrahigh power and cyclability of LiFePO4. Nano Lett 15:6756–6763

    Article  CAS  Google Scholar 

  31. Lu C, Rooney DW, Jiang X, Sun W, Wang Z, Wang J, Sun K (2017) Achieving high specific capacity of lithium-ion battery cathodes by modification with “N-O˙” radicals and oxygen-containing functional groups. J Mater Chem A 5:24636

    Article  CAS  Google Scholar 

  32. Bekkay T, Sacher E, Yelon A (1989) Surface reaction during the argon ion sputter cleaning of surface oxidized crystalline silicon (111). Surf Sci 217:L377–L381

    Article  CAS  Google Scholar 

  33. Liu WR, Guo ZZ, Young WS, Shieh DT, Wu HC, Yang MH, Wu NL (2005) Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. J Power Sources 140:139–144

    Article  CAS  Google Scholar 

  34. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett 11:2949–2954

    Article  CAS  Google Scholar 

  35. Lin Y, Lin Y, Zhou T, Zhao G, Huang Y, Yang Y, Huang Z (2013) Electrochemical performance of LiFePO4/Si composites as cathode material for lithium ion batteries. Mater Chem Phys 138:313–318

    Article  CAS  Google Scholar 

  36. Genscher H, Lübke M (1988) Electrolytic growth and dissolution of oxide layers on silicon in aqueous solutions of fluorides. Ber Bunsenges Phys Chem 92:573–577

    Article  Google Scholar 

  37. Li Q, Zhu SP, Lu YY (2017) 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv Funct Mater 27:1606422

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Institute of New Energy and Low-Carbon Technology and the Analytical & Testing Centre of Sichuan University for providing part of the analytical instruments.

Funding

This work was supported by the National Natural Science Foundation of China (No.81927809 and No.21777108) and the Science and Technology Department of Sichuan Province (No.2019YFG0218).

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the final version of the manuscript being submitted.

Corresponding authors

Correspondence to Yong Guo or Dan Xiao.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5211 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Meng, Y., Guo, Y. et al. LiFePO4-covered silicon composite cathode with additional Li storage for lithium-ion batteries. Ionics 27, 4983–4993 (2021). https://doi.org/10.1007/s11581-021-04267-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04267-8

Keywords

Navigation