Skip to main content
Log in

High Performance Nitrogen-Doped Si/C as the Anode Material of Lithium-Ion Batteries

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The large-scale synthesis of electrode materials in the field of lithium ion batteries (LIBs) is highly depending on the synthetic technique. In this paper, we developed a facile route to synthesize N-doped carbon coated silicon (Si/C) materials. In that, commercial Si flakes were ball-milled with asphalt as a carbon source and dopamine as a nitrogen source, followed by carbonization in inert atmorsphere to obtain N-doped Si/C materials. As a result, the N-doped Si/C material achieved better cycling stability and slightly higher initial charging capacity of 2265.1 mA h g–1 than that of undoped Si/C at the current density of 200 mA g–1. After 50 cycles, a charge capacity of 1359.1 mA h g–1 was retained, representing 36.7% capacity enhancement compared with that of the Si/C sample (994.4 mA h g–1). Moreover, the rate performance of the Si-based material was also effectively improved by the N-doping. It can be explained that the N-doped carbon layer can facilitate the Li-ions diffusion. Overall, the N-doped Si/C material obtained by a simple technique is promising for the high energy density LIBs application as the anode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhang, L., Rajagopalan, R., Guo, H.P., Hu, X.L., Dou, S.X., and Liu, H.K., A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries, Adv. Funct. Mater., 2016, vol. 26, p. 440.

    Article  CAS  Google Scholar 

  2. Chen, S., Shen, L., and van Aken, P.A., Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries, Adv. Mater., 2017, vol. 29, p. 1605650.

    Article  Google Scholar 

  3. Kalnaus, S., Rhodes, K., and Daniel, C., A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery, J. Power Sources, 2011, vol. 196, p. 8116.

    Article  CAS  Google Scholar 

  4. Michan, A.L., Divitini, G., and Pell, A.J., Solid electrolyte interphase growth and capacity loss in silicon electrodes, J. Am. Chem. Soc., 2016, vol. 138, p. 7918.

    Article  CAS  Google Scholar 

  5. Tokranov, A., Kumar, R., and Li, C.Z., Control and optimization of the electrochemical and mechanical properties of the solid electrolyte interphase on silicon electrodes in lithium ion batteries, Adv. Energy Mater., 2016, vol. 6, p. 1502302.

    Article  Google Scholar 

  6. Fang, G., Deng, X.L., and Zou, J.Z., Amorphous/ordered dual carbon coated silicon nanoparticles as anodeto enhance cycle performance in lithium ion batteries, Electrochim. Acta, 2019, vol. 295, p. 498.

    Article  CAS  Google Scholar 

  7. Xie, D., Xia, X., and Zhong, Y.D., Exploring advanced sandwiched arrays by vertical graphene and N-doped carbon for enhanced sodium storage, Adv. Energy Mater., 2017, vol. 7, p. 1601804.

    Article  Google Scholar 

  8. Ji, D.H., Wan, Y.Z., and Yang, Z.W., Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: a novel nanocomposite for lithium-ion batteries, Electrochim. Acta, 2016, vol. 192, p. 22.

    Article  CAS  Google Scholar 

  9. Ryu, J., Hong, D., and Choi, S., Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes, ACS Nano, 2016, vol. 10, p. 2843.

    Article  CAS  Google Scholar 

  10. Awadh, S.M. and Yaseen, Z.M., Investigation of silica polymorphs stratified in siliceous geodeusing FTIR and XRD methods, Mater. Chem. Phys., 2019, vol. 228, p. 45.

    Article  CAS  Google Scholar 

  11. Xia, Y., Zhang, W.K., and Xiao, Z., Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries, J. Mater. Chem., 2012, vol. 22, p. 9209.

    Article  CAS  Google Scholar 

  12. Wang, H.B., Zhang, C.J., and Liu, Z.H., Nitrogen-doped graphene nanosheets with excellent lithium storage properties, J. Mater. Chem., 2011, vol. 21, p. 5430.

    Article  CAS  Google Scholar 

  13. Kapteijn, F., Moulijn, J.A., and Matzner, S., Development of nitrogen functionality in model chars during gasification in CO2 and O2, Carbon, 1999, vol. 37, p. 1143.

    Article  CAS  Google Scholar 

  14. Wehling, T.O., Novoselov, K.S., and Morozov, S.V., Molecular doping of graphene, Nano Lett., 2007, vol. 8, p. 173.

    Article  Google Scholar 

  15. Ma, X., Wang, E.G., and Tilley, R.D., Size-controlled short nanobells: growth and formation mechanism, Appl. Phys. Lett., 2000, vol. 77, p. 4136.

    Article  CAS  Google Scholar 

  16. Ma, C.C., Shao, X.H., and Cao, D.P., Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study, J. Mater. Chem., 2012, vol. 22, p. 8911.

    Article  CAS  Google Scholar 

  17. Dahn, J.R., Zheng, T., and Liu, Y., Mechanisms for lithium insertion in carbonaceous materials, Science, 1995, vol. 270, p. 590.

    Article  CAS  Google Scholar 

  18. Reddy, A.L., Srivastava, A., and Gowda, S.R., Synthesis of nitrogen-doped graphene films for lithium battery application, ACS Nano, 2010, vol. 4, p. 6337.

    Article  CAS  Google Scholar 

  19. Li, Y.F., Zhou, Z., and Wang, L.B., CN(x) nanotubes with pyridinelike structures: p-type semiconductors and Li storage materials, J. Chem. Phys., 2008, vol. 129, p. 56.

    Google Scholar 

  20. Dong, H., Fu, X.L., and Wang, J., In-situ construction of porous Si@C composites with LiCl template to provide silicon anode expansion buffer, Carbon, 2021, vol. 173, p. 687.

    Article  CAS  Google Scholar 

  21. He, Y.Y., Xu, G., and Wang, C.S., Horsetail-derived Si@N-doped carbon as low-cost and long cycle life anode for Li-ion half/full cells, Electrochim. Acta, 2018, vol. 264, p. 173.

    Article  CAS  Google Scholar 

  22. Wang, Y.H., Liu, Y.P., and Zheng, J.Y., Electrochemical performances and volume variation of nano-textured silicon thin films as anodes for lithium-ion batteries, Nanotechnology, 2013, vol. 24, p. 424011.

    Article  Google Scholar 

  23. Wang, D.S., Gao, M.X., and Pan, H.G., Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization, J. Alloys Compd., 2014, vol. 604, p. 130.

    Article  CAS  Google Scholar 

  24. Ng, S.H., Wang, J.Z., and Wexler, D., Amorphous carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries, J. Phys. Chem. C, 2007, vol. 111, p. 11131.

    Article  CAS  Google Scholar 

  25. Chandrasekaran, R., Magasinski, A., Yushin, G., and Fuller, T.F., Analysis of lithium insertion/deinsertion in a silicon electrode particle at room temperature, J. Electrochem. Soc., 2010, vol. 157, p. A1139.

    Article  CAS  Google Scholar 

  26. Wu, P., Wang, H., Tang, Y., Zhou, Y., and Lu, T., Three-dimensionalinterconnected network of graphene-wrappedporous silicon spheres: in situ magnesiothermic-reduction synthesisand enhanced lithium-storage capabilities, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 3546.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Tang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin Ying, Yuan, A., Jin, X. et al. High Performance Nitrogen-Doped Si/C as the Anode Material of Lithium-Ion Batteries. Russ J Electrochem 58, 136–142 (2022). https://doi.org/10.1134/S1023193522020124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522020124

Keywords:

Navigation