Skip to main content

Advertisement

Log in

Mn-Pyridine N site-enriched Mn-N–C derived from covalent organic polymer for electrochemical oxygen reduction and capacitive storage

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A new Mn-pyridine covalent organic polymer combining on carbon nanotubes and graphenes was thermally converted into porous Mn-N–C materials with high graphitization degree. It was found to be highly active electrocatalysts for oxygen reduction reaction (ORR) in both alkaline and acidic media. The ORR half-wave potential reached 0.87 V in 0.1 M KOH and 0.62 V in 0.1 M HClO4, together with a high Zn-air battery power density of 141 mW cm−2. It also demonstrated an impressive capacitive storage performance in alkaline and acidic media, with a reversible capacitance of 408 F‧g−1 in 6 M KOH and 310 F‧g−1 in 2.0 M H2SO4. The abundant Mn-Nx sites coordinating to pyridine N atoms and few MnO nanoparticles contributed to its efficient ORR catalytic activity and better capacitive storage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 3
Fig. 4
Fig.  5 

Similar content being viewed by others

References

  1. Chen G, Xu Y, Huang L, Douka AI, Xia BY (2021) Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries. J Energy Chem 55:183–189

    Article  Google Scholar 

  2. Liang Ding TT, Jin-Song Hu (2021) Recent progress in proton-exchange membrane fuel cells based on metal-nitrogen-carbon catalysts. Acta Phys -Chim Sin 37:2010048

    Google Scholar 

  3. Wang H-Y, Weng C-C, Yuan Z-Y (2021) Insights into efficient transition metal-nitrogen/carbon oxygen reduction electrocatalysts. J Energy Chem 56:470–485

    Article  Google Scholar 

  4. Yao Z-C, Tang T, Hu J-S, Wan L-J (2021) Recent advances on nonprecious-metal-based bifunctional oxygen electrocatalysts for zinc-air batteries. Energy Fuels 35:6380–6401

    Article  CAS  Google Scholar 

  5. Li J, Chen Y, Tang Y, Li S, Dong H, Li K, Han M, Lan Y-Q, Bao J, Dai Z (2014) Metal–organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. J Mater Chem A 2:6316–6319

    Article  CAS  Google Scholar 

  6. Li C, Wu M, Liu R (2019) High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Appl Catal B 244:150–158

    Article  CAS  Google Scholar 

  7. Zhou Q, Cai J, Zhang Z, Gao R, Chen B, Wen G, Zhao L, Deng Y, Dou H, Gong X, Zhang Y, Hu Y, Yu A, Sui X, Wang Z, Chen Z (2021) A Gas-phase migration strategy to synthesize atomically dispersed Mn-N-C catalysts for Zn-air batteries. Small Methods 5(6): 2100024

  8. Tian H, Cui X, Dong H, Meng G, Kong F, Chen Y, Peng L, Chen C, Chang Z, Shi J (2021) Engineering single MnN4 atomic active sites on polydopamine-modified helical carbon tubes towards efficient oxygen reduction. Energy Storage Mater 37:274–282

    Article  Google Scholar 

  9. He Y, Tan Q, Lu L, Sokolowski J, Wu G (2019) Metal-nitrogen-carbon catalysts for oxygen reduction in PEM fuel cells: self-template synthesis approach to enhancing catalytic activity and stability. Electrochem Energy Rev 2:231–251

    Article  CAS  Google Scholar 

  10. Zhang G, Chenitz R, Lefèvre M, Sun S, Dodelet J-P (2016) Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells? Nano Energy 29:111–125

    Article  CAS  Google Scholar 

  11. Liu K, Qiao Z, Hwang S, Liu Z, Zhang H, Su D, Xu H, Wang G (2019) Mn- and N-doped carbon as promising catalysts for oxygen reduction reaction: theoretical prediction and experimental validation. Appl Catal B 243:195–203

    Article  CAS  Google Scholar 

  12. Zhong Y, Liang X, He Z, Tan W, Zhu J, Yuan P, Zhu R, He H (2014) The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: from the perspective of hydroxyl radical generation. Appl Catal B 150–151:612–618

    Article  Google Scholar 

  13. Kim H-Y, Ju Y-W (2020) Fabrication of Mn-N-C catalyst for oxygen reduction reactions using Mn-embedded carbon nanofiber. Energies 13(10): 2561

  14. Cheng R, Yang J, Jiang M, Dong A, Guo M, Zhang J, Sun B, Fu C (2020) Hierarchical porous manganese- and nitrogen-codoped carbon nanosheets derived from surface modified biomass as efficient oxygen reduction catalysts for Al-air batteries. J Electrochem Soc 167:110552

    Article  CAS  Google Scholar 

  15. Wang Y, Zhang X, Xi S, Xiang X, Du Y, Chen P, Lyu D, Wang S, Tian ZQ, Shen PK (2020) Rational design and synthesis of hierarchical porous Mn–N–C nanoparticles with atomically dispersed MnNx moieties for highly efficient oxygen reduction reaction. ACS Sustain Chem Eng 8:9367–9376

    Article  CAS  Google Scholar 

  16. Xiao L, Yang J-M, Huang G-Y, Zhao Y, Zhu H-B (2020) Construction of efficient Mn-N-C oxygen reduction electrocatalyst from a Mn(II)-based MOF with N-rich organic linker. Inorg Chem Commun 118:107982

    Article  CAS  Google Scholar 

  17. Li J, Chen M, Cullen DA, Hwang S, Wang M, Li B, Liu K, Karakalos S, Lucero M, Zhang H, Lei C, Xu H, Sterbinsky GE, Feng Z, Su D, More KL, Wang G, Wang Z, Wu G (2018) Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat Catal 1:935–945

    Article  CAS  Google Scholar 

  18. Zhang X, Liu L, Qiao Y, Liu J, Kong A, Shan Y (2019) Sn(OH)x-assisted synthesis of mesoporous Mn-porphyrinic frameworks and their carbon derivatives for electrocatalysis. Dalton Trans 48:14678–14686

    Article  CAS  Google Scholar 

  19. Cheng T, Jiang Y, Jin L, Kong A, Shan Y (2020) Covalent pendulous anthraquinone polymers coupled on graphenes for efficient capacitance storage in both alkaline and acidic media. Dalton Trans 49:11640–11647

    Article  CAS  Google Scholar 

  20. Fu X, Gao R, Jiang G, Li M, Li S, Luo D, Hu Y, Yuan Q, Huang W, Zhu N, Yang L, Mao Z, Xiong J, Yu A, Chen Z, Bai Z (2021) Evolution of atomic-scale dispersion of FeNx in hierarchically porous 3D air electrode to boost the interfacial electrocatalysis of oxygen reduction in PEMFC. Nano Energy 83:105734

    Article  CAS  Google Scholar 

  21. Liang Z, Kong N, Yang C, Zhang W, Zheng H, Lin H, Cao R (2021) Highly curved nanostructure-coated Co, N-doped carbon materials for oxygen electrocatalysis. Angewandte Chemie International Edition 60: 12759–12764

  22. Fu J, Kang W, Guo X, Wen H, Zeng T, Yuan R, Zhang C (2020) 3D hierarchically porous NiO/Graphene hybrid paper anode for long-life and high rate cycling flexible Li-ion batteries. J Energy Chem 47:172–179

    Article  Google Scholar 

  23. Zhao H, Jiang R, Zhang Y, Xie B, Fu J, Yuan X, Yang W, Wu Y, Zhang R (2021) An MnO2 nanosheet@nitrogen-doped graphene aerogel enables high specific energy and high specific power for supercapacitors and Zn–air batteries. J Mater Chem A 9:5848–5856

    Article  CAS  Google Scholar 

  24. Zhai T, Wang F, Yu M, Xie S, Liang C, Li C, Xiao F, Tang R, Wu Q, Lu X, Tong Y (2013) 3D MnO2–graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale 5:6790–6796

    Article  CAS  Google Scholar 

  25. Lei J, Zhou J, Li J, Wen J, Su L, Duan T, Zhu W (2018) Novel collagen waste derived Mn-doped nitrogen-containing carbon for supercapacitors. Electrochim Acta 285:292–300

    Article  CAS  Google Scholar 

  26. Zhao H, Xing B, Zhang C, Huang G, Yu J, Jiang Z, Qu X, Wu X, Cao Y, Zhang C (2020) MnOx–modified corrugated carton–derived hierarchical porous carbon with ultrafast kinetics behaviour for high–performance symmetric supercapacitors. J Alloys Compd 848:156423

    Article  CAS  Google Scholar 

  27. Zhang ZJ, Cheng LX, Chen XY (2015) Nitrogen/manganese oxides co-doped nanoporous carbon materials: structure characterization and electrochemical performances for supercapacitor applications. Electrochim Acta 161:84–94

    Article  CAS  Google Scholar 

  28. Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H (2017) High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv Mater 29:1700804

    Article  Google Scholar 

  29. Li S, Yu L-L, Shi Y-T, Fan J, Li R-B, Fan G-D, Xu W-L, Zhao J-T (2019) Greatly enhanced faradic capacities of 3D porous Mn3O4/G composites as lithium-ion anodes and supercapacitors by C-O–Mn bonding. ACS Appl Mater Interfaces 11:10178–10188

    Article  CAS  Google Scholar 

  30. Guo L, Hwang S, Li B, Yang F, Wang M, Chen M, Yang X, Karakalos SG, Cullen DA, Feng Z (2021) Promoting atomically dispersed MnN4 sites via sulfur doping for oxygen reduction: unveiling intrinsic activity and degradation in fuel cells. ACS Nano 15:6886–6899

    Article  CAS  Google Scholar 

  31. Chen M, Li X, Yang F, Li B, Stracensky T, Karakalos S, Mukerjee S, Jia Q, Su D, Wang G (2020) Atomically dispersed MnN4 catalysts via environmentally benign aqueous synthesis for oxygen reduction: mechanistic understanding of activity and stability improvements. ACS Catal 10:10523–10534

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunmei Song or Aiguo Kong.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 544 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Huang, Z., Liu, J. et al. Mn-Pyridine N site-enriched Mn-N–C derived from covalent organic polymer for electrochemical oxygen reduction and capacitive storage. Ionics 27, 5229–5239 (2021). https://doi.org/10.1007/s11581-021-04266-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04266-9

Keywords

Navigation