Skip to main content
Log in

High-rate performance of LiNi0.5Mn1.45Al0.05O4 cathode material for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This paper presents an effective approach to improve the electrochemical performance of LiNi0.5Mn1.5O4 as cathode material for Li-ion batteries, including Al doping in Mn-site, combined with the spray drying method in which soluble starch is added as a cheap and environmentally friendly template agent. The as-prepared LiNi0.5Mn1.45Al0.05O4 material exhibits high crystallinity and excellent electrochemical performances. In detail, its delivers a reversible capacity of 114 mA h g−1 at 1 C in a voltage range of 3.5–4.95 V after 200 cycles, with a capacity retention of 94.4%. It still delivers reversible capacity of 73 mA h g−1 even at a high rate of 20 C. The superior electrochemical properties of LiNi0.5Mn1.45Al0.05O4 root from the disordered spinel structure for enhanced stability and Al doping for improved Li-ion diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nie P, Liu X, Fu R, Wu Y, Jiang J, Dou H, Zhang X (2017) Mesoporous silicon anodes by using polybenzimidazole derived pyrrolic N-enriched carbon toward high-energy Li-ion batteries. ACS Energy Lett 2(6):1279–1287

    Article  CAS  Google Scholar 

  2. Jiang J, Nie P, Ding B, Wu W, Chang Z, Wu Y, Dou H, Zhang X (2016) Effect of graphene modified Cu current collector on the performance of Li4Ti5O12 anode for lithium-ion batteries. ACS Appl Mater Interfaces 8(45):30926–30932

    Article  CAS  Google Scholar 

  3. Zhao H, Wang L, Chen Z, He X (2019) Challenges of fast charging for electric vehicles and the role of red phosphorous as anode material: review. Energies 12(20):3897

    Article  CAS  Google Scholar 

  4. Sun Y, Wang L, Li Y, Li Y, Lee HR, Pei A, He X, Cui Y (2019) Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule 3(4):1080–1093

    Article  CAS  Google Scholar 

  5. Zhang B, Carlson RB, Smart JG, Dufek EJ, Liaw B (2019) Challenges of future high power wireless power transfer for light-duty electric vehicles----technology and risk management, eTransportation 2:100012

  6. Tomaszewska A, Chu Z, Feng X, O’Kane S, Liu X, Chen J, Ji C, Endler E, Li R, Liu L, Li Y, Zheng S, Vetterlein S, Gao M, Du J, Parkes M, Ouyang M, Marinescu M, Offer G, Wu B (2019) Lithium-ion battery fast charging: a review, eTransportation 1:100011

  7. Yuan L-X, Wang Z-H, Zhang W-X, Hu X-L, Chen J-T, Huang Y-H, Goodenough JB (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4(2):269–284

    Article  CAS  Google Scholar 

  8. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148(3):A224–A229

    Article  CAS  Google Scholar 

  9. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458(7235):190–193

    Article  CAS  Google Scholar 

  10. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  11. Park BC, Kim HB, Myung ST, Amine K, Belharouak I, Lee SM, Sun YK (2008) Improvement of structural and electrochemical properties of AlF3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials on high voltage region. J Power Sources 178(2):826–831

    Article  CAS  Google Scholar 

  12. Wang L, Li JG, He XM, Pu WH, Wan CR, Jiang CY (2009) Recent advances in layered LiNixCoyMn1-x-yO2 cathode materials for lithium ion batteries. J Solid State Electrochem 13(8):1157–1164

    Article  CAS  Google Scholar 

  13. Wang L, He XM, Sun WT, Wang JL, Li YD, Fan SS (2012) Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials. Nano Lett 12(11):5632–5636

    Article  CAS  Google Scholar 

  14. He XM, Wang JX, Wang L, Li JJ (2016) Nano-crystalline Li1.2Mn0.6Ni0.2O2 prepared via amorphous complex precursor and its electrochemical performances as cathode material for lithium-ion batteries. Materials 9(8):12

  15. He XM, Wang JX, Dai ZJ, Wang L, Tian GY (2016) The synthesis of LiMnxFe1-xPO4/C cathode material through solvothermal jointed with solid-state reaction. Materials 9(9):10

    Article  Google Scholar 

  16. Zhao H, Fang L, Shu X, Liu J, Wu T, Wang Z, Li Y, Su J (2018) Environment-friendly synthesis of high-voltage LiNi0.5Mn1.5O4 nanorods with excellent electrochemical properties. Ceram Int 44:20575–20580

  17. Ran Q, Zhao H, Hu Y, Hao S, Shen Q, Liu J, Li H, Xiao Y, Li L, Wang L, Liu X (2020) Multifunctional integration of double-shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2 cathode for advanced lithium-ion batteries at high cutoff voltage. ACS Appl Mater Interfaces 12:9268–9276

  18. Ran Q, Zhao H, Hu Y, Hao S, Liu J, Li H, Liu X (2020) Enhancing surface stability of LiNi0.8Co0.1Mn0.1O2 cathode with hybrid core-shell nanostructure induced by high-valent titanium ions for Li-ion batteries at high cut-off voltage. J Alloys Compd 834:155099–155109

  19. Zhao H, Li Y, Shen D, Yin Q, Ran Q (2020) Significantly enhanced electrochemical properties of LiMn2O4-based composite microspheres embedded with nano-carbon black particles. J Market Res 9:7027–7033

    CAS  Google Scholar 

  20. Zhao H, Hu N, Xu R, Liu H, Liu J, Ran Q (2020) Spray-drying synthesis of LiMnO2@VXC-72R composite microspheres with excellent electrochemical performance. Ceram Int 46:21805–21809

    Article  CAS  Google Scholar 

  21. Hu Y, Zhao H, Tan M, Liu J, Shu X, Zhang M, Liu S, Ran Q, Li H, Liu X (2020) Synthesis of α-LiFeO2 /Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance. J Mater Sci Technol 55:173–181

    Article  Google Scholar 

  22. Zhang M, Zhao H, Tan M, Liu J, Hu Y, Liu S, Shu X, Li H, Ran Q, Cai J, Liu X (2019) Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage. J Alloys Compd 774:82–92

  23. Zhao H, Nie Y, Li Y, Wu T, Zhao E, Song J, Komarneni S (2019) Low-cost and eco-friendly synthesis of octahedral LiMn2O4 cathode material with excellent electrochemical performance. Ceram Int 45:17183–17191

    Article  CAS  Google Scholar 

  24. Zhao H, Gao X, Li Y, Ran Q, Fu C, Feng Y, Liu J, Liu X, Su J (2019) Synergistic effects of zinc-doping and nano-rod morphology on enhancing the electrochemical properties of spinel Li-Mn-O material. Ceram Int 45:17591–17597

    Article  CAS  Google Scholar 

  25. Ran Q, Zhao H, Hu Y, Shen Q, Liu W, Liu J, Shu X, Zhang M, Liu S, Tan M (2018) Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries at high cut-off voltage, Electrochimica Acta 289:82–93

  26. Zhang M, Ming T, Zhao H, Liu S, Shu X, Hu Y, Liu J, Ran Q, Hao L, Liu X (2018) Enhanced high-voltage cycling stability and rate capability of magnesium and titanium co-doped lithium cobalt oxides for lithium-ion batteries. Appl Surf Sci 458:111–118

    Article  CAS  Google Scholar 

  27. Zhao H, Wang J, Wang G, Liu S, Tan M, Liu X, Komarneni S (2017) Facile synthesis of orthorhombic LiMnO2 nanorods by in-situ carbothermal reduction: Promising cathode material for Li ion batteries. Ceram Int 43:10585–10589

    Article  CAS  Google Scholar 

  28. Zhao H, Liu S, Wang Z, Cai Y, Tan M, Liu X (2016) Enhanced elevated-temperature performance of LiAlxSi0.05Mg0.05Mn1.90-xO4 (0≤x≤0.08) cathode materials for high-performance lithium-ion batteries. Electrochim Acta 199:18–26

  29. Zhao H, Liu S, Wang Z, Cai Y, Tan M, Liu X (2016) LiSixMn2-xO4 (x≤0.10) cathode materials with improved electrochemical properties prepared via a simple solid-state method for high-performance lithium-ion batteries. Ceram Int 42:13442–13448

  30. Zhao H, Liu S, Cai Y, Wang Z, Tan M, Liu X (2016) A simple and mass production preferred solid-state procedure to prepare the LiSixMgxMn2–2xO4 (0≤x≤0.10) with enhanced cycling stability and rate capability. J Alloys Compd 671:304–311

  31. Zhao H, Liu S, Liu X, Tan M, Wang Z, Cai Y, Komarneni S (2016) Orthorhombic LiMnO2 nanorods as cathode materials for lithium-ion batteries: synthesis and electrochemical properties. Ceram Int 42:9319–9322

    Article  CAS  Google Scholar 

  32. Bhaskar A, Mikhailova D, Kiziltas-Yavuz N, Nikolowski K, Oswald S, Bramnik NN, Ehrenberg H (2014) 3d-Transition metal doped spinels as high-voltage cathode materials for rechargeable lithium-ion batteries. Prog Solid State Chem 42(4):128–148

    Article  CAS  Google Scholar 

  33. Okada M, Lee YS, Yoshio M (2000) Cycle characterizations of LiMxMn2-xO4 (M = Co, Ni) materials for lithium secondary battery at wide voltage region. J Power Sources 90(2):196–200

    Article  CAS  Google Scholar 

  34. Ito A, Li D, Lee Y, Kobayakawa K, Sato Y (2008) Influence of Co substitution for Ni and Mn on the structural and electrochemical characteristics of LiNi0.5Mn1.5O4. J Power Sources 185:1429–1433

  35. Oh SH, Chung KY, Jeon SH, Kim CS, Cho WI, Cho BW (2009) Structural and electrochemical investigations on the LiNi0.5−xMn1.5−yMx+yO4 (M =Cr, Al, Zr) compound for 5V cathode material. J Alloys Compd 469:244–250

  36. Gao J, Li JJ, Song F, Lin JX, He XM, Jiang CY (2015) Strategy for synthesizing spherical LiNi0.5Mn1.5O4 cathode material for lithium ion batteries. Mater Chem Phys 152:177–182

  37. Li JG, Zhang YY, Li JJ, Wang L, He XM, Gao J (2011) AlF3 coating of LiNi0.5Mn1.5O4 for high-performance Li-ion batteries. Ionics 17(8):671–675

  38. Liu G, Zhang J, Zhang X, Du Y, Zhang K, Li G, Yu H, Li C, Li Z, Sun Q, Wen L (2017) Study on oxygen deficiency in spinel LiNi0.5Mn1.5O4 and its Fe and Cr-doped compounds. J Alloys Compd 725:580–586

  39. Liu G, Sun H, Kong X, Li Y, Wang B (2015) Facile synthesis of high performance LiNi0.5Mn1.4Mg0.1O4 and LiNi0.5Mn1.4Al0.1O4 by a low temperature solution combustion synthesis method. Int J Electrochem Sc 10(8):6651–6662

  40. Yoshihiro K, Seiyu S, Koichi U, Naoaki K (2010) Synthesis and electrochemical properties of LiNi0.5-xMn1.5-xM2xO4 (M=Al, Cr) cathode materials prepared by PVA method. Electrochemistry 78(8):658–661

  41. Sun HY, Kong X, Wang BS, Luo TB, Liu GY (2018) Cu doped LiNi0.5Mn1.5-xCuxO4 (x=0, 0.03, 0.05, 0.10, 0.15) with significant improved electrochemical performance prepared by a modified low temperature solution combustion synthesis method. Ceram Int 44(5):4603–4610

  42. Zhong GB, Wang YY, Zhang ZC, Chen CH (2011) Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4. Electrochim Acta 56(18):6554–6561

  43. Ma L-W, Chen B-Z, Shi X-C, Zhang W, Zhang K (2010) Stability and Li+ extraction/adsorption properties of LiMxMn2-xO4 (M = Ni, Al, Ti; 0≤x≤1) in aqueous solution. Colloids Surf, A 369(1–3):88–94

    Article  CAS  Google Scholar 

  44. Zhu W, Liu D, Trottier J, Gagnon C, Howe J, Mauger A, Julien CM, Zaghib K (2015) In-situ Raman spectroscopic investigation of LiMn1.45Ni0.45M0.1O4 (M = Cr, Co) 5 V cathode materials. J Power Sources 298:341–348

  45. Deng J, Xu Y, Xiong L, Li L, Sun X, Zhang Y (2016) Improving the fast discharge performance of high-voltage LiNi0.5Mn1.5O4 spinel by Cu2+, Al3+, Ti4+ tri-doping. J Alloys Compd 677:18–26

  46. Wang J, Nie P, Xu G, Jiang J, Wu Y, Fu R, Dou H, Zhang X (2018) High-voltage LiNi0.45Cr0.1Mn1.45O4 cathode with superlong cycle performance for wide temperature lithium-Ion batteries. Adv Funct Mater 28(4):1704808

  47. Shu X, Zhao H, Hu Y, Liu J, Tan M, Liu (2018) Magnesium and silicon co-doped LiNi0.5Mn1.5O4 cathode material with outstanding cycling stability for lithium-ion batteries. Vacuum 156:1–8

  48. Luo Y, Lu T, Zhang Y, Yan L, Mao SS, Xie J (2017) Surface-segregated, high-voltage spinel lithium-ion battery cathode material LiNi0.5Mn1.5O4 cathodes by aluminium doping with improved high-rate cyclability. J Alloys Compd 703:289–297

  49. Li D, Ito A, Kobayakawa K, Noguchi H, Sato Y (2007) Electrochemical characteristics of LiNi0.5Mn1.5O4 prepared by spray drying and post-annealing. Electrochim Acta 52:1919–1924

  50. Risthaus T, Wang J, Friesen A, Wilken A, Berghus D, Winter M, Li J (2015) Synthesis of spinel LiNi0.5Mn1.5O4 with secondary plate morphology as cathode material for lithium ion batteries. J Power Sources 293:137–142

  51. Risthaus T, Wang J, Friesen A, Krafft R, Kolek M, Li J (2016) Synthesis of LiNi0.5Mn1.5O4 cathode materials with different additives: effects on structural, morphological and electrochemical properties. J Electrochem Soc 163(9):A2103-A2108

  52. Kiziltas-Yavuz N, Bhaskar A, Dixon D, Yavuz M, Nikolowski K, Lu L, Eichel R-A, Ehrenberg H (2014) Improving the rate capability of high voltage lithium-ion battery cathode material LiNi0.5Mn1.5O4 by ruthenium doping. J Power Sources 267:533–541

  53. Rosedhi ND, Idris NH, Rahman MM, Din MFM, Wang J (2016) Disordered spinel LiNi0.5Mn1.5O4 cathode with improved rate performance for lithium-ion batteries. Electrochim Acta 206:374–380

  54. Patoux S, Daniel L, Bourbon C, Lignier H, Pagano C, Le Cras F, Jouanneau S, Martinet S (2009) High voltage spinel oxides for Li-ion batteries: from the material research to the application. J Power Sources 189(1):344–352

    Article  CAS  Google Scholar 

  55. Wang L, Li H, Huang X, Baudrin E (2011) A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4”. Solid State Ionics 193(1):32–38

  56. Wang J, Lin W, Wu B, Zhao J (2014) Porous LiNi0.5Mn1.5O4 sphere as 5 V cathode material for lithium ion batteries. J Mater Chem A 2(39):16434–16442

  57. Gu Y-J, Li Y, Chen Y-B, Liu H-Q (2016) Comparison of Li/Ni antisite defects in Fd-3m and P4332 nanostructured LiNi0.5Mn1.5O4 electrode for Li-ion batteries. Electrochim Acta 213:368–374

  58. Wang L, Chen D, Wang J, Liu G, Wu W, Liang G (2016) Synthesis of LiNi0.5Mn1.5O4 cathode material with improved electrochemical performances through a modified solid-state method. Powder Technol 292:203–209

  59. Chen A, Kong L, Shu Y, Yan W, Wu W, Xu Y, Gao H, Jin Y (2019) Role of Al-doping with different sites upon the structure and electrochemical performance of spherical LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. RSC Adv 9:12656–12666

  60. Zhong GB, Wang YY, Zhao XJ, Wang QS, Yua Y, Chen CH (2012) Structural, electrochemical and thermal stability investigations on LiNi0.5-xAl2xMn1.5-xO4 (0≤2x≤1.0) as 5 V cathode materials. J Power Sources 216:368–375

  61. Sun H-D, He S-C, Xia B-B, Fang G-Q, Liu W-W, Qiu G-C, Zhang Q, Kaneko S, Zheng J-W, Li D-C (2013) Preparation, structure and electrochemical properties of LiNi0.5-xAl2xMn1.5-xO4 (0≤2x≤0.15) by spray dry process. Chem J Chin Univ 34(5):1059–1066

  62. Zeng Y-P, Wu X-l, Mei P, Cong L-N, Yao C, Wang R-S, Xie H-M, Sun L-Q (2014) Effect of cationic and anionic substitutions on the electrochemical properties of LiNi0.5Mn1.5O4 spinel cathode materials. Electrochim Acta 138:493–500

Download references

Acknowledgements

The authors would like to thank the Joint Work Plan for Research Projects under the Clean Vehicles Consortium at U.S. and China–Clean Energy Research Center (CERC-CVC2.0, 2016-2020).

Funding

This work was funded by the Ministry of Science and Technology of China (No. 2019YFE0100200), the Tsinghua-Foshan Scientific Research Program (No. 2019THFS0132), and the Tsinghua University Initiative Scientific Research Program (No. 2019Z02UTY06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangang Li or Xiangming He.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Sheng, L., Wang, J. et al. High-rate performance of LiNi0.5Mn1.45Al0.05O4 cathode material for lithium-ion batteries. Ionics 27, 4639–4647 (2021). https://doi.org/10.1007/s11581-021-04244-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04244-1

Keywords

Navigation