Skip to main content
Log in

Study on preparation of high performance manganese dioxide supercapacitor by cyclic voltammetry

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, we used cyclic voltammetry method to prepare manganese dioxide with different scanning rates of voltage on a three-dimensional porous nickel foam substrate. We systematically studied the influence of the scanning rate of electrodeposition on the morphology, structure, and electrochemical performance of the sample. According to the electrochemical performance, we found the optimal electrodeposition parameters, and the electrode prepared under this condition has a high specific capacitance (458 F g−1 and 286 F g−1 at the current density of 1 A g−1 and 10 A g−1) and low impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee S, Liu R, Duay J (2011) Electrochemical formation mechanism for the controlled synthesis of heterogeneous MnO2/Poly (3, 4-ethylenedioxythiophene) nanowires. ACS Nano 5(7):5608–5619

    Article  PubMed  CAS  Google Scholar 

  2. Wang Y, Shi Z, Huang Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113(30):13103–13107

    Article  CAS  Google Scholar 

  3. Ania C, Khomenko V, Raymundo-Pinero E (2007) The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv Func Mater 17(11):1828–1836

    Article  CAS  Google Scholar 

  4. Cao X, Shi Y, Shi W (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 7(22):3163–3168

    Article  CAS  PubMed  Google Scholar 

  5. Mokaya R, Wei L, Sevilla M (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1(3):356–361

    Article  CAS  Google Scholar 

  6. Bao L, Zang J, Li X (2011) Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett 11(3):1215

    Article  CAS  PubMed  Google Scholar 

  7. Choi D, Blomgren G, Kumta P (2006) Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv Mater 18(9):1178–1182

    Article  CAS  Google Scholar 

  8. Frackowiak E, Jurewicz K, Delpeux S (2001) Nanotubular materials for supercapacitors. J Power Sources 97(8):822–825

    Article  Google Scholar 

  9. Service R (2006) Materials science-new ‘supercapacitor’ promises to pack more electrical punch. Science 313(5789):902–902

    Article  PubMed  Google Scholar 

  10. Reddy ALM, Shaijumon MM, Gowda SR et al (2010) Multi-segmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J Phys Chem C 114(1):658–663

    Article  CAS  Google Scholar 

  11. Zhao S, Liu T, Hou D (2015) Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications. Appl Surf Sci 356(NOV.30):259–265

    Article  CAS  Google Scholar 

  12. Xu M, Kong L, Zhou W (2007) Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C 112(51):19141–19147

    Article  CAS  Google Scholar 

  13. Kuratani K, Tatsumi K, Kuriyama N (2007) Manganese oxide nanorod with 2 × 4 tunnel structure: synthesis and electrochemical properties. Cryst Growth Des 7(8):1375–1377

    Article  CAS  Google Scholar 

  14. Aghazadeh M, Maragheh MG, Ganjali MR (2016) Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance. Appl Surf Sci 364(Feb.28):141–147

    Article  CAS  Google Scholar 

  15. Chen S, Zhu J, Han Q (2009) Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Cryst Growth Des 9(10):1–15

    Google Scholar 

  16. Jiang H, Zhao T, Ma J (2011) Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. Chem Commun 47:1264–1266

    Article  CAS  Google Scholar 

  17. Xu J, Sun Y, Lu M (2018) Fabrication of the porous MnCo2O4 nanorod arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Acta Mater 152:162–174

  18. Inoue H, Namba Y, Higuchi E (2010) Preparation and characterization of Ni-based positive electrodes for use in aqueous electrochemical capacitors. J Power Sources 195(18):6239–6244

    Article  CAS  Google Scholar 

  19. Zhang X, Shi W, Zhu J et al (2010) Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res 3(9):643–652

    Article  CAS  Google Scholar 

  20. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer, Berlin

  21. Meher SK, Rao GR et al (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. J Phys Chem C 115(31):15646–15654

    Article  CAS  Google Scholar 

  22. Torardi CC, Miao CR, Lewittes ME et al (2002) High lithium capacity MxV2O5Ay ∙ nH2O for rechargeable batteries. J Solid State Chem 163(1):93–99

    Article  CAS  Google Scholar 

  23. Park BO, Lokhande CD, Park HS (2004) Electrodeposited ruthenium oxide (RuO2) films for electrochemical supercapacitors. J Mater Sci 39(13):4313–4317

    Article  CAS  Google Scholar 

  24. Wei W, Cui X, Chen W (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40(3):1697

    Article  CAS  PubMed  Google Scholar 

  25. Yan J, Fan Z, Wei T (2010) Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833

    Article  CAS  Google Scholar 

  26. Brousse T, Taberna PL, Crosnier O (2007) Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J Power Sources 173(1):633–641

    Article  CAS  Google Scholar 

  27. Chen X (2005) Li, Jiang Y, Rational synthesis of α-MnO2 and γ-Mn2O3 nanowires with the electrochemical characterization of α-MnO2 nanowires for supercapacitor. Solid State Commun 136(2):94–96

    Article  CAS  Google Scholar 

  28. He Y, Chen W, Li X (2013) Free-standing three-dimensional graphene/MnO2 composite networks as ultra-light and flexible supercapacitor electrodes. ACS Nano 7(1):174

    Article  CAS  PubMed  Google Scholar 

  29. Fan H (2017) Jin, Self-branched alpha-MnO2/delta-MnO2 heterojunction nanowires with enhanced pseudocapacitance. Mater Horiz 4(3):415–422

    Article  CAS  Google Scholar 

  30. Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as electrode material for electrochemical capacitors. J Electrochem Soc 142(8):2699–2703

    Article  CAS  Google Scholar 

  31. Chao D, Xia X, Zhu C et al (2014) Hollow nickel nanocorn arrays as three-dimensional and conductive support for metal oxides to boost supercapacitive performance. Nanoscale 6(11):5691–5697

    Article  CAS  PubMed  Google Scholar 

  32. Brousse T, Belanger D, Long JW (2015) To be or not to be pseudocapacitive? J Electrochem Soc 162(5):A5185–A5189

    Article  CAS  Google Scholar 

  33. Shinomiya T, Gupta V, Miura N (2006) Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochim Acta 51(21):4412–4419

    Article  CAS  Google Scholar 

  34. Lang X, Hirata A, Fujita T (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6(4):232–236

    Article  CAS  PubMed  Google Scholar 

  35. Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16(16):3184–3190

    Article  CAS  Google Scholar 

  36. Subramanian V, Zhu H, Vajtai R (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109(43):20207–20214

    Article  CAS  PubMed  Google Scholar 

  37. Xu M, Kong L, Zhou W (2007) Hydrothermal synthesis and pseudocapacitance properties of alpha-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111(51):19141–19147

    Article  CAS  Google Scholar 

  38. Wu S, Chen W, Yan L (2014) Fabrication of a 3D MnO2/graphene hydrogel for high-performance asymmetric supercapacitors. J Mater Chem A 2(8):2765–2772

    Article  CAS  Google Scholar 

  39. Zhang M, Yang D, Li J (2020) Supercapacitor performances of MnO2 and MnO2/reduced graphene oxide prepared with various electrodeposition time. Vacuum 178:109455

    Article  CAS  Google Scholar 

  40. Kuang M, Wen ZQ, Guo XL (2014) Engineering firecracker-like beta-manganese dioxides@spinel nickel cobaltates nanostructures for high-performance supercapacitors. J Power Sources 270(15):426–433

    Article  CAS  Google Scholar 

  41. Liu Q, Yang J, Luo X (2020) Fabrication of a fibrous MnO2 @MXene/CNT electrode for high-performance flexible supercapacitor. Ceram Int 46(8):11874–11881

    Article  CAS  Google Scholar 

  42. Zhang J, Sun J, Shifa TA (2019) Hierarchical MnO2/activated carbon cloth electrode prepared by synchronized electrochemical activation and oxidation for flexible asymmetric supercapacitors. Chem Eng J 372:1047–1055

    Article  CAS  Google Scholar 

  43. He W, Wang C, Zhuge F (2017) Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 35:242–250

    Article  CAS  Google Scholar 

  44. Hu CC, Tsou TW (2002) Ideal Capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Lectrochem Commun 4(2):105–109

    Article  CAS  Google Scholar 

  45. Peiyuan W, Shaodan Li, Shen W (2017) Synthesis of three-dimensional flowery NiCo2O4 materials and analysis of supercapacitor performance. J Light Ind 32(02):78–83

    Google Scholar 

Download references

Funding

The work was financed by the Sichuan Science and Technology Program (2021JDRC0020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dingyu Yang or Jitao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zhang, M., Yang, D. et al. Study on preparation of high performance manganese dioxide supercapacitor by cyclic voltammetry. Ionics 27, 4521–4529 (2021). https://doi.org/10.1007/s11581-021-04223-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04223-6

Keywords

Navigation