Skip to main content
Log in

Spray pyrolyzed thorn-like nanostructured nickel oxide electrodes for symmetric supercapacitor device

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel oxide (NiO) is an appealing electrode for the supercapacitor consequent to its giant capacity, good cyclic stability, and economical feature. Here, we find the significant capacity elevation of nickel oxide thin film electrodes at 350 °C temperature during the variation of precursor concentration. XRD patterns of all electrodes show a face-centered cubic crystal structure. The prepared NiO electrodes are specified by utilizing different characterization techniques, i.e., wettability study, FESEM, TEM, and XPS. It is found that the concentration of the precursor performs a prominent role in increasing the specific capacitance of the electrode. As concentration increases, the specific capacitance increases till a certain value of concentration and then decreases accordingly. The highest value of the specific capacitance is 838.14 Fg−1 at a scan rate of 0.002 Vs−1 obtained for the 0.6 M (NC-3) electrode. The optimized electrode shows 82% retention even after 5000 cyclic voltammetric cycles. The optimized electrodes’ specific power and specific energy at 0.001 Acm−2 are 400.00 Whkg−1 and 9.41 kwkg−1, respectively. Electrochemical characterizations of the fabricated NiO symmetric device are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. A. Ramar, F.-M. Wang, A.G. Hailu, L. Merinda, E.B. Chemere, Electrochim. Acta 430, 141082 (2022). https://doi.org/10.1016/j.electacta.2022.141082

    Article  CAS  Google Scholar 

  2. M.J. Lain, E. Kendrick, J. Power Sources. 493, 1229690 (2021). https://doi.org/10.1016/j.jpowsour.2021.229690

    Article  CAS  Google Scholar 

  3. S. Yadav, A. Sharma, J. Energy Storage. 44, 103295 (2021). https://doi.org/10.1016/j.est.2021.103295

    Article  Google Scholar 

  4. N.R. Chodankar, S.J. Patil, G. Seeta, R. Raju, D.W. Lee, D.P. Dubal, Y.S. Huh, Y.K. Han, ChemSusChem (2019). https://doi.org/10.1002/cssc.201902339

    Article  PubMed  Google Scholar 

  5. S.V. Khavale, U.T. Nakate, R.C. Ambare, B.J. Lokhande, J. Mater. Sci. 28, 5106–5115 (2017). https://doi.org/10.1007/s10854-016-6166-x

    Article  CAS  Google Scholar 

  6. R.S. Ingole, B.Y. Fugare, B.J. Lokhande, J. Mater. Sci. 28, 16374–16383 (2017). https://doi.org/10.1007/s10854-017-7548-4

    Article  CAS  Google Scholar 

  7. R.C. Ambare, B.J. Lokhande, J. Mater. Sci. 28, 12246–12252 (2017). https://doi.org/10.1007/s10854-017-7040-1

    Article  CAS  Google Scholar 

  8. R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Measurement. 88, 66–76 (2016). https://doi.org/10.1016/j.measurement.2016.02.063

    Article  Google Scholar 

  9. R.G. Bobade, U.T. Nakate, P. Roasiah, M. Ouladsmane, B.J. Lokhande, R.C. Ambar, Inorg. Chem. Commun. 154, 110998 (2023). https://doi.org/10.1016/j.inoche.2023.110998

    Article  CAS  Google Scholar 

  10. R.M. Kore, R.S. Mane, M. Naushad, M.R. Khan, B.J. Lokhande, RSC Adv. 6, 24478–24483 (2016). https://doi.org/10.1039/C5RA26041H

    Article  CAS  Google Scholar 

  11. B.K. Kim, V. Chabot, A. Yu, Electrochim. Acta 109, 370–380 (2013). https://doi.org/10.1016/j.electacta.2013.07.119

    Article  CAS  Google Scholar 

  12. A. Paravannoor, R. Ranjusha, A.M. Asha, R. Vani, S. Kalluri, K.R.V. Subramanian, N. Sivakumar, T.N. Kim, S.V. Nair, A. Balakrishnan, Chem. Eng. J. 220, 360–366 (2013). https://doi.org/10.1016/j.cej.2013.01.063

    Article  CAS  Google Scholar 

  13. M. Liu, J. Chang, J. Sun, L. Gao, RSC Adv. 3, 8003–8008 (2013). https://doi.org/10.1039/C3RA23286G

    Article  CAS  Google Scholar 

  14. G. Cai, X. Wang, M. Cui, P. Darmawan, J. Wang, A. Eh, P.S. Lee, Nano Energy. 12, 258–267 (2015). https://doi.org/10.1016/j.nanoen.2014.12.031

    Article  CAS  Google Scholar 

  15. L. Wang, Y. Hao, Y. Zhao, Q. Lai, X. Xu, J. Solid-State Chem. 183, 2576–2581 (2010). https://doi.org/10.1016/j.jssc.2010.09.006

    Article  CAS  Google Scholar 

  16. D. Su, H.S. Kim, W.S. Kim, G. Wang, Chem. Europian J. 18, 26, 8224–8229 (2012). https://doi.org/10.1002/chem.201200086

    Article  CAS  Google Scholar 

  17. J.W. Lee, T. Ahn, J.H. Kim, J.M. Ko, J.D. Kim, Electrochim. Acta. 56, 4849–4857 (2011). https://doi.org/10.1016/j.electacta.2011.02.116

    Article  CAS  Google Scholar 

  18. Y. Zheng, H. Ding, M. Zhang, Res. Bull. 44, 403–407 (2009). https://doi.org/10.1016/j.materresbull.2008.05.002

    Article  CAS  Google Scholar 

  19. K.K. Purushothaman, I.M. Babu, S. Balasubramanian, G. Muralidharan, ACS Appl. Mater. Interfaces. 5, 21, 10767–10773 (2013). https://doi.org/10.1021/am402869p

    Article  CAS  PubMed  Google Scholar 

  20. S.K. Meher, P. Justin, G.R. Rao, Electrochim. Acta. 55, 8388–8396 (2010). https://doi.org/10.1016/j.electacta.2010.07.042

    Article  CAS  Google Scholar 

  21. P.S. Patil, Mater. Chem. Phys. 59, 185–198 (1999). https://doi.org/10.1016/S0254-0584(99)00049-8

    Article  CAS  Google Scholar 

  22. G.S. Gund, D.P. Dubal, S.S. Shinde, C.D. Lokhande, ACS Appl. Mater. Interfaces. 6, 5, 3176–3188 (2014). https://doi.org/10.1021/am404422g

    Article  CAS  PubMed  Google Scholar 

  23. A.M. Padhan, P. Alagarsamy, J. Alloys Compd. 840, 155769 (2020). https://doi.org/10.1016/j.jallcom.2020.155769

    Article  CAS  Google Scholar 

  24. R.G. Bobade, N.B. Dabke, S.F. Shaikh, A.M. Al-Enizi, B. Pandit, B.J. Lokhande, R.C. Ambare, J. Mater. Sci. 35, 129 (2024). https://doi.org/10.1007/s10854-023-11818-4

    Article  CAS  Google Scholar 

  25. T. Liu, K. Wang, Y. Chen, S. Zhao, Y. Han, Green. Energy Environ. 4, 2, 171–179 (2019). https://doi.org/10.1016/j.gee.2019.01.010

    Article  Google Scholar 

  26. J.D. Desai, J.M. Sci, Mater. Electron. 27, 12329–12334 (2016). https://doi.org/10.1007/s10854-016-5617-8

    Article  CAS  Google Scholar 

  27. R. Thejas, T.L. Soundarya, G. Nagaraju, K. Swaroop, S.C. .Prashantha, M. Veena, E. Melagiriyappa, C.S. Naveen, Mater. Lett. (2022). https://doi.org/10.1016/j.mlblux.2022.100156

    Article  Google Scholar 

  28. M. Becht, F. Atamny, A. Baiker, K.-H. Dahmen, Surf. Sci. 371(1), 2–3 (1997). https://doi.org/10.1016/S0039-6028(96)01015-1

    Article  Google Scholar 

  29. H. Shin, S.-B. Choi, C.-J. Yu, J.-Y. Kim, J. Nanosci. Nanotechnol. 11, 4629–4632 (2011). https://doi.org/10.1166/jnn.2011.3690

    Article  CAS  PubMed  Google Scholar 

  30. B.Y. Fugare, B.J. Lokhande, Appl. Phys. A (2017). https://doi.org/10.1007/s00339017-1008-0

    Article  Google Scholar 

  31. J.-F. Hou, J.-F. Gao, L.-B. Kong, Electrochim. Acta (2021). https://doi.org/10.1016/j.electacta.2021.138086

    Article  Google Scholar 

  32. X. Wu, W. Xing, L. Zhang, S. Zhuo, J. Zhou, G. Wang, S. Qiao, J. Power Sources. 185, 1563–1568 (2008). https://doi.org/10.1016/j.powtec.2012.02.048

    Article  CAS  Google Scholar 

  33. B.G. Sundara Raj, B. Natesan, A.M. Asiri, J.J. Wu, S. Anandan, Ionics. 26, 953–960 (2020). https://doi.org/10.1007/s10800-020-01421-4

    Article  CAS  Google Scholar 

  34. A.P. Grosvenor, M.C. Beisinger, R.S.C. Smart, N.S. McIntyre, Surf. Sci. 600, 1771–1779 (2006). https://doi.org/10.1016/j.susc.2006.01.041

    Article  CAS  Google Scholar 

  35. A.N. Mansour, Surf. Sci. Spectra. 231, 3, 231–238 (1994). https://doi.org/10.1116/1.1247751

    Article  CAS  Google Scholar 

  36. V. Biju, M. Abdul Khadar, J. Nanoparticle Res. 4, 247–253 (2002). https://doi.org/10.1023/A:1019949805751

    Article  CAS  Google Scholar 

  37. Y. Gua, L.-Q. Fana, J.-L. Huanga, C.-L. Genga, J.-M. Lina, M.-L. Huanga, Y.-F.H. Ji-Huai, Wua, J. Power Sources. 425, 15, 60–68 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.123

    Article  CAS  Google Scholar 

  38. F.F. Bobinihi, O.E. Fayemi, D.C. Onwudiwe, Mater. Sci. Semicond. Process. 121, 105315 (2021). https://doi.org/10.1016/j.mssp.2020.105315

    Article  CAS  Google Scholar 

  39. S.D. Dhas, P.S. Maldar, M.D. Patil, A.B. Nagare, M.R. Waikar, R.G. Sonkawade, A.V. Moholkar, Vacuum. 181, 109646 (2020). https://doi.org/10.1016/j.vacuum.2020.109646

    Article  CAS  Google Scholar 

  40. A.J. Bard, L.R. Faulkner, New York: Wiley, 2001, 2nd edition. Russ. J. Electrochem. 38, 1364–1365 (2002). https://doi.org/10.1023/A:1021637209564

    Article  Google Scholar 

  41. T.S. Ghadge, A.L. Jadhav, Y.M. Uplane, A.V. Thakur, S.V. Kamble, B.J. Lokhande, J. Mater. Sci. 32, 9018–9031 (2021). https://doi.org/10.1007/s10854-021-05572-8

    Article  CAS  Google Scholar 

  42. S.G. Randive, H.M. Pathan, B.J. Lokhande, ES Energy Environ. 20, 877 (2023). https://doi.org/10.30919/esee8c877

    Article  CAS  Google Scholar 

  43. S.G. Randive, R.M. Kore, B.J. Lokhande, J. Nano-Electron. Phys. 12, 02027 (2020). https://doi.org/10.21272/jnep.12(2).02027

    Article  CAS  Google Scholar 

  44. A.A. Latoszynska, G.Z. Zukowska, I.A. Rutkowska, P.L. Taberna, P. Simon, P.J. Kulesza, W. Wieczorek, J. Power Sources 274, 1147–1154 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.094

    Article  CAS  Google Scholar 

  45. A.R. Harris, D.B. Grayden, John, Micromachines. 14, 722 (2023). https://doi.org/10.3390/mi14040722

    Article  PubMed  PubMed Central  Google Scholar 

  46. S.G. Randive, B.J. Lokhande, J. Alloys Compd. 944, 169046 (2023). https://doi.org/10.1016/j.jallcom.2023.169046

    Article  CAS  Google Scholar 

  47. D.-W. Wang, F. Li, H.-M. Cheng, J. Power Sources. 185, 1563–1568 (2008). https://doi.org/10.1016/j.jpowsour.2008.08.032

    Article  CAS  Google Scholar 

  48. G. Feng Luan, Y. Wang, X. Ling, H. Lu, Y. Wang, X.-X. Tong, Y. Liu, Li, Nanoscale. 5, 7984–7990 (2013). https://doi.org/10.1039/c3nr02710d

    Article  CAS  PubMed  Google Scholar 

  49. Q.X. Xia, J. Fu, J.M. Yun, R.S. Mane, K.H. Kim, RSC Adv. 7, 11000 (2017). https://doi.org/10.1039/c6ra27880a

    Article  CAS  Google Scholar 

  50. S. Giri, D. Ghosh, C.K. Das, Adv. Funct. Mater. 24, 9, 1312–1324 (2013). https://doi.org/10.1002/adfm.201302158

    Article  CAS  Google Scholar 

  51. F.X. Zhao, B.M. Sanchez, P.J. Dobson, P.S. Grant, Nanoscale. 3, 839–855 (2011). https://doi.org/10.1039/C0NR00594K

    Article  CAS  PubMed  Google Scholar 

  52. F. Zhou, Q. Liu, D. Kang, J. Gu, W. Zhang, D. Zhang, J. Mater. Chem. A 2, 3505–3512 (2014). https://doi.org/10.1039/C3TA14723A

    Article  CAS  Google Scholar 

Download references

Funding

Authors are grateful to thank the funding projects Bhabha Atomic Research Center (BARC), Mumbai, and the Department of Science and Technology (DST), New Delhi, India, for providing financial support under the project scheme 2010/34/46/BRNS/2228 and SERB Scheme. The authors (S.G. Randive) are thankful to CSIR-HRDG India for providing financial support through the CSIR-NET (JRF) scheme. [File no. 09/990(0005)/2021-EMR-I].

Author information

Authors and Affiliations

Authors

Contributions

Shankar G. Randive: experimental synthesis, writing—original draft, validation, formal analysis, and visualization. Rushikesh G. Bobade: formal analysis, visualization, and software. R. C. Ambare: review & editing-original finalizing draft. B. J. Lokhande: supervision, writing—review & editing, etc.

Corresponding authors

Correspondence to Revanappa C. Ambare or Balkrishna J. Lokhande.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 552.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randive, S.G., Bobade, R.G., Ambare, R.C. et al. Spray pyrolyzed thorn-like nanostructured nickel oxide electrodes for symmetric supercapacitor device. J Mater Sci: Mater Electron 35, 577 (2024). https://doi.org/10.1007/s10854-024-12229-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12229-9

Navigation