Skip to main content

Advertisement

Log in

A high performance ORR electrocatalyst—Mn-N5-C/G: design, synthesis, and related mechanism

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Platinum group metal (PGM)-free catalysts are highly desirable for oxygen reduction reaction (ORR) for clean energy. To prevent possible Fenton reaction, a catalyst containing manganese-nitrogen-carbon coordination structure (Mn-N–C) supported on monolayer graphene (Mn-N–C/G) is synthesized through a self-developed tailoring, self-assembling, and reconstructing vapor phase deposition (TSRVD) process using manganese phthalocyanine (MnPc) as the precursor. The novel catalyst Mn-N–C/G with high-density and well-organized distribution of manganese ion center coordinated with five nitrogen (Mn-N5) active sites, efficient electron-conductivity from the carbon six-member ring, and ideal structural stability shows an onset potential of 0.99 V vs. RHE and current density of 1.3 mA cm−2 at potential 0.88 V vs. RHE compared with commercial Pt/C (0.96 V vs. RHE and 1.1 mA cm−2, respectively). Based on the analyses of SEM, HRTEM, XRD, SAED, Raman, and XPS on catalyst Mn-N–C/G, a reasonable formation model of catalyst Mn-N–C/G is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gottesfeld S et al (2018) Anion exchange membrane fuel cells: current status and remaining challenges. J Power Sources 375:170–184. https://doi.org/10.1016/j.jpowsour.2017.08.010

    Article  CAS  Google Scholar 

  2. Ma L et al (2018) Fundamental understanding and material challenges in rechargeable nonaqueous Li-O-2 batteries: recent progress and perspective. Adv Energy Mater 8. https://doi.org/10.1002/aenm.201800348

  3. Meng X, Wang YC, Zhang LJ, Jin FM, Wang W (2018) Investigations on the potential fluctuation of Al-Sn alloys during galvanostatic discharge process in alkaline solution. J Electrochem Soc 165:A1492–A1502. https://doi.org/10.1149/2.0731807jes

    Article  CAS  Google Scholar 

  4. Liang JS et al (2019) Tungsten-doped L1(0)-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode. Angewandte Chemie-International Edition 58:15471–15477. https://doi.org/10.1002/anie.201908824

    Article  CAS  PubMed  Google Scholar 

  5. Wang KX, Zhu QC, Chen JS (2018) Strategies toward high-performance cathode materials for lithium-oxygen batteries. Small 14. https://doi.org/10.1002/smll.201800078

  6. Hong QS, Lu HM, Cao Y (2019) Improved oxygen reduction activity and stability on N, S-enriched hierarchical carbon architectures with decorating core-shell iron group metal sulphides nanoparticles for Al-air batteries. Carbon 145:53–60. https://doi.org/10.1016/j.carbon.2019.01.002

    Article  CAS  Google Scholar 

  7. Suntivich J et al (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries (vol 3, pg 546, 2011). Nat Chem 3:647–647. https://doi.org/10.1038/nchem.1093

    Article  CAS  Google Scholar 

  8. Wang YJ et al (2018) Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals. Energy Environ Sci 11:258–275. https://doi.org/10.1039/c7ee02444d

    Article  CAS  Google Scholar 

  9. Han C, Li WJ, Liu HK, Dou SX, Wang JZ (2019) Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc-air batteries. Mater Horiz 6:1812–1827. https://doi.org/10.1039/c9mh00502a

    Article  CAS  Google Scholar 

  10. Yang XD, Chen C, Zhou ZY, Sun SG (2019) Advances in active site structure of carbon-based non-precious metal catalysts for oxygen reduction reaction. Acta Phys Chim Sin 35:472–485. https://doi.org/10.3866/pku.Whxb201806131

    Article  Google Scholar 

  11. Liu J et al (2019) Recent advances in active sites identification and regulation of M-N/C electro-catalysts towards ORR. Sci China-Chem 62:669–683. https://doi.org/10.1007/s11426-018-9425-5

    Article  CAS  Google Scholar 

  12. Shao YY, Dodelet JP, Wu G, Zelenay P (2019) PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges. Adv Mater 31:8. https://doi.org/10.1002/adma.201807615

    Article  CAS  Google Scholar 

  13. Liang ZZ, Zheng HQ, Cao R (2019) Importance of electrocatalyst morphology for the oxygen reduction reaction. ChemElectroChem 6:2600–2614. https://doi.org/10.1002/celc.201801859

    Article  CAS  Google Scholar 

  14. Li CL, Wu MC, Liu R (2019) High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Appl Catal B-Environ 244:150–158. https://doi.org/10.1016/j.apcatb.2018.11.039

    Article  CAS  Google Scholar 

  15. Hebie S et al (2016) Electrocatalytic activity of carbon-supported metallophthalocyanine catalysts toward oxygen reduction reaction in alkaline solution. J Solid State Electrochem 20:931–942. https://doi.org/10.1007/s10008-015-2932-6

    Article  CAS  Google Scholar 

  16. Li W et al (2019) Bottom-up construction of active sites in a Cu-N-4-C catalyst for highly efficient oxygen reduction reaction. ACS Nano 13:3177–3187. https://doi.org/10.1021/acsnano.8b08692

    Article  CAS  PubMed  Google Scholar 

  17. Zhang XL, Yang ZX, Lu ZS, Wang WC (2018) Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: a theoretical evaluation. Carbon 130:112–119. https://doi.org/10.1016/j.carbon.2017.12.121

    Article  CAS  Google Scholar 

  18. Svane KL, Reda M, Vegge T, Hansen HA Improving the activity of M-N-4 catalysts for the oxygen reduction reaction by electrolyte adsorption. ChemSusChem 10. https://doi.org/10.1002/cssc.201902443

  19. Anandhababu G et al (2017) Highly exposed Fe-N4 active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode. Dalton Trans 46:1803–1810. https://doi.org/10.1039/c6dt04705j

    Article  CAS  PubMed  Google Scholar 

  20. Lv GJ et al (2013) A novel cobalt tetranitrophthalocyanine/graphene composite assembled by an in situ solvothermal synthesis method as a highly efficient electrocatalyst for the oxygen reduction reaction in alkaline medium. Phys Chem Chem Phys 15:13093–13100. https://doi.org/10.1039/c3cp51577j

    Article  CAS  PubMed  Google Scholar 

  21. Li JZ et al (2018) Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat Catal 1:935–945. https://doi.org/10.1038/s41929-018-0164-8

    Article  CAS  Google Scholar 

  22. Jiang HB et al (2012) Half-metallic properties of single-walled polymeric manganese phthalocyanine nanotubes. Sensors 12:8438–8446. https://doi.org/10.3390/s120708438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu GQ, Liu F, Wang YC, Wei ZD, Wang W (2019) Systematic exploration of N, C coordination effects on the ORR performance of Mn-N-x doped graphene catalysts based on DFT calculations. Phys Chem Chem Phys 21:12826–12836. https://doi.org/10.1039/c9cp02155h

    Article  CAS  PubMed  Google Scholar 

  24. Li XS et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314. https://doi.org/10.1126/science.1171245

    Article  CAS  PubMed  Google Scholar 

  25. Garsany Y, Baturina OA, Swider-Lyons KE, Kocha SS (2010) Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal Chem 82:6321–6328. https://doi.org/10.1021/ac100306c

    Article  CAS  PubMed  Google Scholar 

  26. Qiao MF et al (2020) Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angewandte Chemie-International Edition 59:2688–2694. https://doi.org/10.1002/anie.201914123

    Article  CAS  PubMed  Google Scholar 

  27. Wang Z, Seehra MS (2016) Ising-like chain magnetism, Arrhenius magnetic relaxation, and case against 3D magnetic ordering inβ-manganese phthalocyanine (C32H16MnN8). J Phys Condens Matter 28:136002

    Article  Google Scholar 

  28. Madhuri KP, John NS, Angappane S, Santra PK, Bertram F (2018) Influence of iodine doping on the structure, morphology, and physical properties of manganese phthalocyanine thin films. J Phys Chem C 122:28075–28084. https://doi.org/10.1021/acs.jpcc.8b08205

    Article  CAS  Google Scholar 

  29. Jennings C, Aroca R, Hor A-M, Loutfy RO Raman spectra of solid films 3—Mg, Cu and Zn phthalocyanine complexes. 15:34–37

  30. Zhang JT et al (2016) N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angewandte Chemie-International Edition 55:2230–2234. https://doi.org/10.1002/anie.201510495

    Article  CAS  PubMed  Google Scholar 

  31. Mecheri B et al (2018) Facile synthesis of graphene-phthalocyanine composites as oxygen reduction electrocatalysts in microbial fuel cells. Appl Catal B-Environ 237:699–707. https://doi.org/10.1016/j.apcatb.2018.06.031

    Article  CAS  Google Scholar 

  32. Hosseini MG, Zardari P, Ariankhah I (2019) RuO2, RuO2-TiO2 and RuO2-TiO2-IrO2 nanoparticles supported on Ni mesh as mixed metal oxide electrodes for oxygen reduction reaction. J Iran Chem Soc 16:1749–1760. https://doi.org/10.1007/s13738-019-01648-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Key Laboratory of Metal Fuel Cell of Sichuan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Yang, D., Wang, S. et al. A high performance ORR electrocatalyst—Mn-N5-C/G: design, synthesis, and related mechanism. Ionics 27, 3489–3499 (2021). https://doi.org/10.1007/s11581-021-04154-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04154-2

Keywords

Navigation