Skip to main content
Log in

Highly efficient polymer electrolyte based on electrospun PEO/PAN/single-layered graphene oxide

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, a quasi-solid polymer electrolyte based on poly(ethylene oxide)/poly(acrylonitrile) (PEO/PAN) incorporating different weight ratios of single-layered graphene oxide (GO) nanosheets was prepared via the electrospinning method. Various analyses, including SEM, TEM, AFM, and XRD, were implemented to investigate the electrospun membrane structure. The morphological investigation of the nanocomposite membranes demonstrated a uniform interconnected network of thin nanofibers with an average fiber diameter of 141 nm and high porosity of 94%. The addition of only a minimal amount of GOs (0.05 wt%) into the polymer host contributed effectively to reducing fiber mean diameter and the crystallinity degree of polymer matrix and improving the electrical conductivity of the fibrous membrane. Ultimately, EIS results exhibited a high ionic conductivity of 10.1 mS/cm at room temperature for GO-loaded membrane electrolyte, whereas it is only 3.7 mS/cm for the membrane without GO (~ 173% increase). The improvement of porosity, amorphous content, and electrical conductivity of the nanocomposite membrane upon incorporating a small amount of GOs was responsible for the higher ionic conductivity. These results present a highly efficient membrane electrolyte, a promising candidate for application in dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Teo LP, Buraidah MH, Arof AK (2020) Polyacrylonitrile-based gel polymer electrolytes for dye-sensitized solar cells: a review. Ionics 26:4215–4238. https://doi.org/10.1007/s11581-020-03655-w

    Article  CAS  Google Scholar 

  2. Balakrishnan NTM, Joyner JD, Jishnu NS, Das A, Jabeen Fatima MJ, Prasanth R (2021) Electrospun polyacrylonitrile (PAN)-based polymer gel electrolytes for lithium-ion batteries. Springer, Singapore. https://doi.org/10.1007/978-981-15-8844-0_5

  3. Cao YC, Xu C, Wu X, Wang X, Xing L, Scott K (2011) A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J Power Sources 196:8377–8382. https://doi.org/10.1016/j.jpowsour.2011.06.074

    Article  CAS  Google Scholar 

  4. Wang Y (2009) Recent research progress on polymer electrolytes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 93:1167–1175. https://doi.org/10.1016/j.solmat.2009.01.009

    Article  CAS  Google Scholar 

  5. Prasanth R, Aravindan V, Srinivasan M (2012) Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteries-preparation and electrochemical characterization. J Power Sources 202:299–307. https://doi.org/10.1016/j.jpowsour.2011.11.057

    Article  CAS  Google Scholar 

  6. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205. https://doi.org/10.1039/b809074m

    Article  CAS  Google Scholar 

  7. Raghavan P, Lim DH, Ahn JH, Nah C, Sherrington DC, Ryu HS, Ahn HJ (2012) Electrospun polymer nanofibers: the booming cutting edge technology. React Funct Polym 72:915–930. https://doi.org/10.1016/j.reactfunctpolym.2012.08.018

    Article  CAS  Google Scholar 

  8. Thomas M, Rajiv S (2020) Grafted PEO polymeric ionic liquid nanocomposite electrospun membrane for efficient and stable dye sensitized solar cell. Electrochim Acta 341:136040. https://doi.org/10.1016/j.electacta.2020.136040

    Article  CAS  Google Scholar 

  9. Banitaba SN, Semnani D, Heydari-Soureshjani E, Rezaei B, Ensafi AA (2019) Nanofibrous poly(ethylene oxide)-based structures incorporated with multi-walled carbon nanotube and graphene oxide as all-solid-state electrolytes for lithium ion batteries. Polym Int 68:1787–1794. https://doi.org/10.1002/pi.5889

    Article  CAS  Google Scholar 

  10. Zha JW, Huang N, He KQ, Dang ZM, Shi CY, Li RKY (2017) Electrospun poly(ethylene oxide) nanofibrous composites with enhanced ionic conductivity as flexible solid polymer electrolytes. High Volt 2:25–31. https://doi.org/10.1049/hve.2016.0069

    Article  Google Scholar 

  11. Hakkak F, Rafizadeh M, Sarabi AA, Yousefi M (2015) Optimization of ionic conductivity of electrospun polyacrylonitrile/poly (vinylidene fluoride) (PAN/PVdF) electrolyte using the response surface method (RSM). Ionics (Kiel) 21:1945–1957. https://doi.org/10.1007/s11581-014-1363-1

    Article  CAS  Google Scholar 

  12. Dissanayake MAKL, Divarathne HKDWMNR, Thotawatthage CA (2014) Electrochimica Acta Dye-sensitized solar cells based on electrospun polyacrylonitrile (PAN) nanofibre membrane gel electrolyte. Electrochim Acta 130:76–81. https://doi.org/10.1016/j.electacta.2014.02.122

  13. Fathy M, Kashyout AB, El Nady J, Ebrahim S, Soliman MB (2016) Electrospun polymethylacrylate nanofibers membranes for quasi-solid-state dye sensitized solar cells. Alexandria Eng J 55:1737–1743. https://doi.org/10.1016/j.aej.2016.03.019

    Article  Google Scholar 

  14. Vinoth S, Kanimozhi G, Narsimulu D, Kumar H, Srinadhu ES, Satyanarayana N (2020) Ionic relaxation of electrospun nanocomposite polymer-blend quasi-solid electrolyte for high photovoltaic performance of Dye-sensitized solar cells. Mater Chem Phys 250:122945. https://doi.org/10.1016/j.matchemphys.2020.122945

    Article  CAS  Google Scholar 

  15. Fathy M, El Nady J, Muhammed M, Ebrahim S, Soliman MB, Kashyout AEHB (2016) Quasi-solid-state electrolyte for dye sensitized solar cells based on nanofiber PMA-PVDF and PMA-PVDF/PEG membranes. Int J Electrochem Sci 11:6064–6077. https://doi.org/10.20964/2016.07.19

  16. Karthik K, Din MMU, Jayabalan AD, Murugan R (2020) Lithium garnet incorporated 3D electrospun fibrous membrane for high capacity lithium-metal batteries. Mater Today Energy 16:100389. https://doi.org/10.1016/j.mtener.2020.100389

    Article  Google Scholar 

  17. Vijayakumar E, Subramania A, Fei Z, Dyson PJ (2015) High-performance dye-sensitized solar cell based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/cobalt sulfide nanocomposite membrane electrolyte. RSC Adv 5:52026–52032. https://doi.org/10.1039/C5RA04944J

    Article  CAS  Google Scholar 

  18. Seo SJ, Yun SH, Woo JJ, Park DW, Kang MS, Hinsch A, Moon SH (2011) Preparation and characterization of quasi-solid-state electrolytes using a brominated poly(2,6-dimethyl-1,4-phenylene oxide) electrospun nanofiber mat for dye-sensitized solar cells. Electrochem Commun 13:1391–1394. https://doi.org/10.1016/j.elecom.2011.08.018

    Article  CAS  Google Scholar 

  19. Quartarone E (1998) PEO-based composite polymer electrolytes. Solid State Ionics 110:1–14. https://doi.org/10.1016/S0167-2738(98)00114-3

    Article  CAS  Google Scholar 

  20. Choi BK, Kim YW, Shin HK (2000) Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochim Acta 45:1371–1374. https://doi.org/10.1016/S0013-4686(99)00345-X

    Article  CAS  Google Scholar 

  21. Chun-guey W, Chiung-hui W, Ming-i L, Huey-jan C (2006) New solid polymer electrolytes based on PEO/PAN hybrids. J Appl Polym Sci 99:1530–1540. https://doi.org/10.1002/app.22250

    Article  CAS  Google Scholar 

  22. Kim M, Lee L, Jung Y, Kim S (2013) Study on ion conductivity and crystallinity of composite polymer electrolytes based on poly(ethylene oxide)/poly(acrylonitrile) containing nano-sized Al203 fillers. J Nanosci Nanotechnol 13:7865–7869. https://doi.org/10.1166/jnn.2013.8107

    Article  CAS  PubMed  Google Scholar 

  23. Gao L, Li J, Sarmad B, Cheng B, Kang W, Deng N (2020) A 3D polyacrylonitrile nanofiber and flexible polydimethylsiloxane macromolecule combined all-solid-state composite electrolyte for efficient lithium metal batteries. Nanoscale 12:14279–14289. https://doi.org/10.1039/d0nr04244g

    Article  CAS  PubMed  Google Scholar 

  24. Abdollahi S, Ehsani M, Morshedian J, Khonakdar HA (2017) Morphology and physical properties of electrospun polyethylene oxide/polyacrylonitrile mats and related graphene-based nanocomposites. J Vinyl Addit Technol 23:E152–E159. https://doi.org/10.1002/vnl.21576

    Article  CAS  Google Scholar 

  25. Sakali SM, Khanmirzaei MH, Lu SC, Ramesh S, Ramesh K (2019) Investigation on gel polymer electrolyte-based dye-sensitized solar cells using carbon nanotube. Ionics (Kiel) 25:319–325. https://doi.org/10.1007/s11581-018-2598-z

    Article  CAS  Google Scholar 

  26. Vinoth S, Kanimozhi G, Hari Prasad K, Harish K, Srinadhu ES, Satyanarayana N (2019) Enhanced ionic conductivity of electrospun nanocomposite (PVDF-HFP + TiO 2 nanofibers fillers) polymer fibrous membrane electrolyte for DSSC application. Polym Compos 40:1585–1594. https://doi.org/10.1002/pc.24904

  27. Banitaba SN, Semnani D, Heydari-Soureshjani E, Rezaei B, Ensafi AA, Taghipour-Jahromi A (2020) Novel electrospun polymer electrolytes incorporated with Keggin-type hetero polyoxometalate fillers as solvent-free electrolytes for lithium ion batteries. Polym Int 69:675–687. https://doi.org/10.1002/pi.6001

    Article  CAS  Google Scholar 

  28. He J, Li X, Su D, Ji H, Zhang X, Zhang W (2016) Super-hydrophobic hexamethyl-disilazane modified ZrO2-SiO2 aerogels with excellent thermal stability. J Mater Chem A 4:5632–5638. https://doi.org/10.1039/c6ta00568c

    Article  CAS  Google Scholar 

  29. Chan YF, Wang CC, Chen CY (2013) Quasi-solid DSSC based on a gel-state electrolyte of PAN with 2-D graphenes incorporated. J Mater Chem A 1:5479–5486. https://doi.org/10.1039/c3ta01684f

    Article  CAS  Google Scholar 

  30. Abdollahi S, Ehsani M, Morshedian J, Khonakdar HA, Reuter U (2018) Structural and electrochemical properties of PEO/PAN nanofibrous blends: prediction of graphene localization. Polym Compos 39:3626–3635. https://doi.org/10.1002/pc.24390

    Article  CAS  Google Scholar 

  31. Jia Y, Chen L, Yu H, Zhang Y, Dong F (2015) Graphene oxide/polystyrene composite nanofibers on quartz crystal microbalance electrode for the ammonia detection. RSC Adv 5:40620–40627. https://doi.org/10.1039/C5RA04890G

    Article  CAS  Google Scholar 

  32. Wang Q, Du Y, Feng Q, Huang F, Lu K, Liu J, Wei Q (2013) Nanostructures and surface nanomechanical properties of polyacrylonitrile/graphene oxide composite nanofibers by electrospinning. J Appl Polym Sci 128:1152–1157. https://doi.org/10.1002/app.38273

    Article  CAS  Google Scholar 

  33. Yao S, Li Y, Zhou Z, Yan H (2015) Graphene oxide-assisted preparation of poly(vinyl alcohol)/carbon nanotube/reduced graphene oxide nanofibers with high carbon content by electrospinning technology. RSC Adv 5:91878–91887. https://doi.org/10.1039/c5ra15985g

    Article  CAS  Google Scholar 

  34. Gao S, Zhong J, Xue G, Wang B (2014) Ion conductivity improved polyethylene oxide/lithium perchlorate electrolyte membranes modified by graphene oxide. J Memb Sci 470:316–322. https://doi.org/10.1016/j.memsci.2014.07.044

    Article  CAS  Google Scholar 

  35. Yuan M, Erdman J, Tang C, Ardebili H (2014) High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv 4:59637–59642. https://doi.org/10.1039/c4ra07919a

    Article  CAS  Google Scholar 

  36. Majeed S, Fierro D, Buhr K, Wind J, Du B, Boschetti-de-fierro A, Abetz V (2012) Multi-walled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes. J Memb Sci 403–404:101–109. https://doi.org/10.1016/j.memsci.2012.02.029

    Article  CAS  Google Scholar 

  37. Taylor P, Arias CB, Zaman AA, Talton J (2007) Rheological behavior and wear abrasion resistance of polyethylene oxide/laponite nanocomposites. J Dispers Sci Technol 28:37–41. https://doi.org/10.1080/01932690601059412

    Article  CAS  Google Scholar 

  38. Akhtar MS, Kwon S, Stadler FJ, Yang OB (2013) High efficiency solid state dye sensitized solar cells with graphene–polyethylene oxide composite electrolytes. Nanoscale 5:5403. https://doi.org/10.1039/c3nr00390f

    Article  CAS  PubMed  Google Scholar 

  39. Zhang L, Hsieh Y-L (2006) Nanoporous ultrahigh specific surface polyacrylonitrile fibres. Nanotechnology 17:4416–4423. https://doi.org/10.1088/0957-4484/17/17/022

    Article  CAS  Google Scholar 

  40. Gopalan AI, Santhosh P, Manesh KM, Nho JH, Kim SH, Hwang CG, Lee KP (2008) Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries. J Memb Sci 325:683–690. https://doi.org/10.1016/j.memsci.2008.08.047

    Article  CAS  Google Scholar 

  41. Pant B, Saud PS, Park M, Park SJ, Kim HY (2016) General one-pot strategy to prepare Ag–TiO2 decorated reduced graphene oxide nanocomposites for chemical and biological disinfectant. J Alloys compd 671:51–59. https://doi.org/10.1016/j.jallcom.2016.02.067

    Article  CAS  Google Scholar 

  42. Abdollahi S, Ehsani M, Morshedian J, Khonakdar HA, Aram E (2019) Application of response surface methodology in assessing the effect of electrospinning parameters on the morphology of polyethylene oxide/polyacrylonitrile blend nanofibers containing graphene oxide. Polym Bull 76:1755–1773. https://doi.org/10.1007/s00289-018-2448-1

    Article  CAS  Google Scholar 

  43. Prasanth R, Shubha N, Hng HH, Srinivasan M (2014) Effect of poly(ethylene oxide) on ionic conductivity and electrochemical properties of poly(vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. J Power Sources 245:283–291. https://doi.org/10.1016/j.jpowsour.2013.05.178

    Article  CAS  Google Scholar 

  44. Shim J, Kim DG, Kim HJ, Lee JH, Baik JH, Lee JC (2014) Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications. J Mater Chem A 2:13873–13885. https://doi.org/10.1039/C4TA02667E

    Article  CAS  Google Scholar 

  45. Diwan P, Harms S, Raetzke K, Chandra A (2012) Polymer electrolyte-graphene composites : conductivity peaks and reasons thereof. Solid State Ionics 217:13–18. https://doi.org/10.1016/j.ssi.2012.04.014

    Article  CAS  Google Scholar 

  46. Deitzel JM, Kleinmeyer JD, Hirvonen JK, Tan NCB (2001) Controlled deposition of electrospun poly (ethylene oxide) ® fibers. Polymer (Guildf) 42:8163–8170

    Article  CAS  Google Scholar 

  47. Kim CS, Oh SM (2000) Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes. Electrochim Acta 45:2101–2109. https://doi.org/10.1016/S0013-4686(99)00426-0

    Article  CAS  Google Scholar 

  48. Yang X, Zhang F, Zhang L, Zhang T, Huang Y, Chen Y (2013) A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications. Adv Funct Mater 23:3353–3360. https://doi.org/10.1002/adfm.201203556

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Abdollahi or M. Ehsani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, S., Sadadi, H., Ehsani, M. et al. Highly efficient polymer electrolyte based on electrospun PEO/PAN/single-layered graphene oxide. Ionics 27, 3477–3487 (2021). https://doi.org/10.1007/s11581-021-04105-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04105-x

Keywords

Navigation