Skip to main content

Advertisement

Log in

Hybrid MXene/reduced graphene oxide aerogel microspheres for hydrogen evolution reaction

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Hybrid MXene/reduced graphene oxide aerogel microspheres (MXene/rGOAMs),where MXenes are two-dimensional (2D) transition metal carbides, with abundant macro/meso/micro multi-scale pores and self-supporting structure, are prepared by electrospraying followed by freeze-drying and then thermal annealing. A center-diverging structure with well-aligned microchannels is formed within each microsphere, which can be maintained after thermal reduction. Such highly ordered 3D hybrid mesoporous network has been tested for the hydrogen evolution reaction (HER) because it may prevent the stacking of the 2D layers, thus enhancing the mass transfer. Actually, in the case of Ti3C2Tx/rGOAMs, obtained with an optimized MXene:GO mass ratio and after a thermal treatment at 400 °C, a better HER performance with respect to the bulk Ti3C2Tx aerogel or the MXene/GO composite is observed (η10=-336 mV), suggesting an accelerated mass transfer through different inter-sheets when the 3D mesoporous microsphere networks are created. The Ti3C2Tx/rGOAMs also exhibit enhanced HER activity compared to rGOAMs, suggesting that the MXene plays a key role due to the presence of titanium atoms with a low valence state.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiao Y, Zheng Y, Jaroniec MT, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086

    Article  CAS  Google Scholar 

  2. Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM (2011) Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)(2)-Pt Interfaces. Science 334:1256–1260

    Article  CAS  Google Scholar 

  3. Jiang H, Gu JX, Zheng XS, Liu M, Qiu XQ, Wang LB, Li WZ, Chen ZF, Ji XB, Li J (2019) Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ Sci 12:322–333

    Article  CAS  Google Scholar 

  4. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098

    Article  CAS  Google Scholar 

  5. Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv.Mater. 23:4248–4253

    Article  CAS  Google Scholar 

  6. Seh ZW, Fredrickson KD, Anasori B, Kibsgaard J, Strickler AL, Lukatskaya MR, Gogotsi Y, Jaramillo TF, Vojvodic A (2016) Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett 1:589–594

    Article  CAS  Google Scholar 

  7. Jiang H, Wang Z, Yang Q, Tan L, Dong L, Dong M (2019) Ultrathin Ti3C2Tx (MXene) Nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett 11:31

    Article  CAS  Google Scholar 

  8. Djire A, Wang X, Xiao C, Nwamba OC, Mirkin MV, Neale NR (2020) Basal Plane Hydrogen evolution activity from mixed metal nitride mxenes measured by scanning electrochemical microscopy. Adv Funct Mater 30:2001136

    Article  CAS  Google Scholar 

  9. Jiang Y, Sun T, Xie X, Jiang W, Li J, Tian B, Su C (2019) Oxygen-functionalized ultrathin Ti3 C2 Tx MXene for enhanced electrocatalytic hydrogen evolution. ChemsusChem 12:1368–1373

    Article  CAS  Google Scholar 

  10. Xiu LY, Wang ZY, Yu MZ, Wu XH, Qiu JS (2018) Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 12:8017–8028

    Article  CAS  Google Scholar 

  11. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:1–12

    Article  Google Scholar 

  12. Vickery JL, Patil AJ, Mann S (2009) Fabrication of graphene–polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater 21:2180–2184

    Article  CAS  Google Scholar 

  13. Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132:14067–14069

    Article  CAS  Google Scholar 

  14. Liu F, Li Y, Hao S, Cheng Y, Zhan Y, Zhang C, Meng Y, Xie Q, Xia H (2020) Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohydr Polym 243:116467

    Article  CAS  Google Scholar 

  15. Freytag A, Sánchez-Paradinas S, Naskar S, Wendt N, Colombo M, Pugliese G, Poppe J, Demirci C, Kretschmer I, Bahnemann DW, Behrens P, Bigall NC (2016) Versatile aerogel fabrication by freezing and subsequent freeze-drying of colloidal nanoparticle solutions. Angew Chem Int Ed 55:1200–1203

    Article  CAS  Google Scholar 

  16. Liao SC, Zhai TL, Xia HS (2016) Highly adsorptive graphene aerogel microspheres with center-diverging microchannel structures. J Mater Chem A 4:1068–1077

    Article  CAS  Google Scholar 

  17. Zhou Z, Liu J, Zhang X, Tian D, Zhan Z, Lu C (2019) Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv Mater Interfaces 6:1802040

    Article  Google Scholar 

  18. Li N, Zhang YF, Jia ML, Lv XD, Li XT, Li R, Ding XQ, Zheng YZ, Tao X (2019) 1T/2H MoSe2-on-MXene heterostructure as bifunctional electrocatalyst for efficient overall water splitting. Electrochim Acta 326:134976

    Article  CAS  Google Scholar 

  19. Huang J-J, Liu X-Q, Meng F-F, He L-Q, Wang J-X, Wu J-C, Lu X-H, Tong Y-X, Fang P-P (2020) A facile method to produce MoSe2/MXene hybrid nanoflowers with enhanced electrocatalytic activity for hydrogen evolution. J Electroanal Chem 856:113727

    Article  CAS  Google Scholar 

  20. Li Y, Meng F, Mei Y, Wang H, Guo Y, Wang Y, Peng F, Huang F, Zhou Z (2020) Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem Eng J 391:123512

    Article  CAS  Google Scholar 

  21. Natu V, Benchakar M, Canaff C, Habrioux A, Célérier S, Barsoum MW (2021) A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter 4:1224–1251. https://doi.org/10.1016/j.matt.2021.01.015

    Article  Google Scholar 

  22. Zhao XF, Vashisth A, Prehn E, Sun WM, Shah S, Habib T, Chen YX, Tan ZY, Lutkenhaus J, Radovic M, Green MJ (2019) Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1:513–526

    Article  Google Scholar 

  23. Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898

    Article  CAS  Google Scholar 

  24. Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum MW (2016) X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci 362:406–417

    Article  CAS  Google Scholar 

  25. Myhra S, Crossley JAA, Barsoum MW (2001) Crystal-chemistry of the Ti3AlC2 and Ti4AlN3 layered carbide/nitride phases—characterization by XPS. J Phys Chem Solids 62:811–817

    Article  CAS  Google Scholar 

  26. Le TA, Tran NQ, Hong Y, Kim M, Lee H (2020) Porosity-engineering of MXene as a support material for a highly efficient electrocatalyst toward overall water splitting. ChemsusChem 13:945–955

    Article  CAS  Google Scholar 

  27. Yuan Y, Li H, Wang L, Zhang L, Shi D, Hong Y, Sun J (2019) Achieving highly efficient catalysts for hydrogen evolution reaction by electronic state modification of platinum on versatile Ti3C2Tx (MXene). ACS Sustain Chem Eng 7:4266–4273

    Article  CAS  Google Scholar 

  28. Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19:2577–2583

    Article  CAS  Google Scholar 

  29. Zhou T, Wu C, Wang Y, Tomsia AP, Li M, Saiz E, Fang S, Baughman RH, Jiang L, Cheng Q (2020) Super-tough MXene-functionalized graphene sheets. Nat Commun 11:2077

    Article  CAS  Google Scholar 

  30. Navarro-Suarez AM, Maleski K, Makaryan T, Yan J, Anasori B, Gogotsi Y (2018) 2D titanium carbide/reduced graphene oxide heterostructures for supercapacitor applications. Batter Supercaps 1:33–38

    Article  CAS  Google Scholar 

  31. Li ZY, Wang LB, Sun DD, Zhang YD, Liu BZ, Hu QK, Zhou AG (2015) Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater Sci Eng B Adv 191:33–40

    Article  CAS  Google Scholar 

  32. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246

    Article  CAS  Google Scholar 

  33. Sarycheva A, Gogotsi Y (2020) Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem Mater 32:3480–3488

    Article  CAS  Google Scholar 

  34. Shen CJ, Wang LB, Zhou AG, Wang B, Wang XL, Lian WW, Hu QK, Qin G, Liu XQ (2018) Synthesis and electrochemical properties of two-dimensional RGO/Ti3C2Tx nanocomposites. Nanomaterials 8:80

    Article  Google Scholar 

  35. Huang B, Zhou NG, Chen XZ, Ong WJ, Li N (2018) Insights into the electrocatalytic hydrogen evolution reaction mechanism on two-dimensional transition-metal carbonitrides (MXene). Chem Eur J 24:18479–18486

    Article  CAS  Google Scholar 

  36. Gao GP, O'Mullane AP, Du AJ (2017) 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 7:494–500

    Article  CAS  Google Scholar 

  37. Ling C, Shi L, Ouyang Y, Wang J (2016) Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem Mater 28:9026–9032

    Article  CAS  Google Scholar 

  38. Yuan W, Cheng L, An Y, Wu H, Yao N, Fan X, Guo X (2018) MXene Nanofibers as Highly Active Catalysts for Hydrogen Evolution Reaction. ACS Sustain Chem Eng 6:8976–8982

    Article  CAS  Google Scholar 

  39. Lunardon M, Ran J, Mosconi D, Marega C, Wang Z, Xia H, Agnoli S, Granozzi G (2020) Hybrid transition metal dichalcogenide/graphene microspheres for hydrogen evolution reaction. Nanomaterials. 10:2376

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science China Foundation (NSCF, Grant Number: 51861135201), the Italian Ministry of Foreign Affairs and International Cooperation (MAECI) through the Cooperation Project “GINGSENG” (Grant PGR05249) between China and Italy and the Natural Science Foundation of Shandong Province [ZR2019QEM009].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanhua Wang or Hesheng Xia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3019 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Zhan, Y., Ran, J. et al. Hybrid MXene/reduced graphene oxide aerogel microspheres for hydrogen evolution reaction. Ionics 27, 3099–3108 (2021). https://doi.org/10.1007/s11581-021-04062-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04062-5

Keywords

Navigation