Skip to main content

Advertisement

Log in

Synthesis of Co2Ni/reduced graphene oxide composite aerogels as efficient hydrogen evolution catalysts

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

H2 is promising clean energy and electrochemical hydrogen evolution reaction offers a sustainable route compared with traditional methane steam reforming. In this work, highly porous Co2Ni and Co2Ni/reduced graphene oxide composite aerogels are prepared by a simple in-situ reduction-gelation method in an aqueous solution. The synthesis starts with Co-Ni hydrogel which is prepared by mixing a strong reduction agent NaBH4 with the corresponding metal ions, while graphene oxide is reduced simultaneously in the gelation process. After supercritical drying, composite aerogels composed with interconnected binary Co2Ni nanoparticles network and reduced graphene oxide sheets are obtained. Such optimized composite alloy/reduced graphene oxide aerogels show good hydrogen evolution catalytic activity in alkaline electrolytes, which is highlighted by the low on-set overpotential (143 mV@10 mA/cm2) and small Tafel slope (85 mV/dec).

Graphical abstract

Highlights

  • 3D-porous Co2Ni/rGO composite aerogel was prepared by an in-situ reduction.

  • rGO increased the surface area and promoted the charge transfer capability.

  • The composite aerogel exhibited good HER catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nazir H, Louis C, Jose S, Prakash J, Muthuswamy N, Buan MEM, Flox C, Chavan S, Shi X, Kauranen P, Kallio T, Maia G, Tammeveski K, Lymperopoulos N, Carcadea E, Veziroglu E, Iranzo A, Kannan AM (2020) Is the H2 economy realizable in the foreseeable future? Part I: H2 production methods. Int J Hydrog Energy 45(27):13777–13788. https://doi.org/10.1016/j.ijhydene.2020.03.092

    Article  CAS  Google Scholar 

  2. Oviedo LR, Muraro PCL, Pavoski G, Espinosa DCR, Ruiz YPM, Galembeck A, Rhoden CRB, da Silva WL (2022) Synthesis and characterization of nanozeolite from (agro)industrial waste for application in heterogeneous photocatalysis. Environ Sci Pollut Res 29(3):3794–3807. https://doi.org/10.1007/s11356-021-15815-0

    Article  CAS  Google Scholar 

  3. Mohammed-Ibrahim J, Sun X (2019) Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting—A review. J Energy Chem 34:111–160. https://doi.org/10.1016/j.jechem.2018.09.016

    Article  Google Scholar 

  4. Roger I, Shipman MA, Symes MD (2017) Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1(1):0003. https://doi.org/10.1038/s41570-016-0003

    Article  CAS  Google Scholar 

  5. Qu K, Zheng Y, Jiao Y, Zhang X, Dai S, Qiao S-Z (2017) Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv Energy Mater 7(9):1602068. https://doi.org/10.1002/aenm.201602068

    Article  CAS  Google Scholar 

  6. Zhou W, Jia J, Lu J, Yang L, Hou D, Li G, Chen S (2016) Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28:29–43. https://doi.org/10.1016/j.nanoen.2016.08.027

    Article  CAS  Google Scholar 

  7. Wang H, Lee H-W, Deng Y, Lu Z, Hsu P-C, Liu Y, Lin D, Cui Y (2015) Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat Commun 6(1):7261. https://doi.org/10.1038/ncomms8261

    Article  CAS  Google Scholar 

  8. Li YH, Liu PF, Pan LF, Wang HF, Yang ZZ, Zheng LR, Hu P, Zhao HJ, Gu L, Yang HG (2015) Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat Commun 6(1):8064. https://doi.org/10.1038/ncomms9064

    Article  CAS  Google Scholar 

  9. Faber MS, Lukowski MA, Ding Q, Kaiser NS, Jin S (2014) Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J Phys Chem C 118(37):21347–21356. https://doi.org/10.1021/jp506288w

    Article  CAS  Google Scholar 

  10. Shi Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45(6):1529–1541. https://doi.org/10.1039/C5CS00434A

    Article  CAS  Google Scholar 

  11. Song J (2017) Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett 2(8):1937–1938. https://doi.org/10.1021/acsenergylett.7b00679

    Article  CAS  Google Scholar 

  12. Yang L, Zeng L, Liu H, Deng Y, Zhou Z, Yu J, Liu H, Zhou W (2019) Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction. Appl Catal B: Environ 249:98–105. https://doi.org/10.1016/j.apcatb.2019.02.062

    Article  CAS  Google Scholar 

  13. Hu KJ, Wakisaka M, Fujita, J-I, Ito Y (2018) Bottom-up synthesis of porous nimo alloy for hydrogen evolution reaction. Metals 8(2)

  14. Gutić SJ, Jovanović AZ, Dobrota AS, Metarapi D, Rafailović LD, Pašti IA, Mentus SV (2018) Simple routes for the improvement of hydrogen evolution activity of Ni-Mo catalysts: From sol-gel derived powder catalysts to graphene supported co-electrodeposits. Int J Hydrog Energy 43(35):16846–16858. https://doi.org/10.1016/j.ijhydene.2017.11.131

    Article  CAS  Google Scholar 

  15. Patil RB, Mantri A, House SD, Yang JC, McKone JR (2019) Enhancing the performance of ni-mo alkaline hydrogen evolution electrocatalysts with carbon supports. ACS Appl Energy Mater 2(4):2524–2533. https://doi.org/10.1021/acsaem.8b02087

    Article  CAS  Google Scholar 

  16. Su J, Yang Y, Xia G, Chen J, Jiang P, Chen Q (2017) Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat Commun 8(1):14969. https://doi.org/10.1038/ncomms14969

    Article  Google Scholar 

  17. Jia Y, Gao X, Teng C, Li X, Liu Y, Zhi M, Hong Z (2019) Co2Ni alloy/N-doped CNTs composite as efficient hydrogen evolution reaction catalyst in alkaline medium. J Alloy Compd 791:779–785. https://doi.org/10.1016/j.jallcom.2019.03.330

    Article  CAS  Google Scholar 

  18. Li T, Luo G, Liu K, Li X, Sun D, Xu L, Li Y, Tang Y (2018) Encapsulation of Ni3Fe nanoparticles in N-doped carbon nanotube–grafted carbon nanofibers as high-efficiency hydrogen evolution electrocatalysts. Adv Funct Mater 28(51):1805828. https://doi.org/10.1002/adfm.201805828

    Article  CAS  Google Scholar 

  19. Liu W, Herrmann A-K, Bigall NC, Rodriguez P, Wen D, Oezaslan M, Schmidt TJ, Gaponik N, Eychmüller A (2015) Noble metal aerogels—synthesis, characterization, and application as electrocatalysts. Acc Chem Res 48(2):154–162. https://doi.org/10.1021/ar500237c

    Article  CAS  Google Scholar 

  20. Cai B, Eychmüller A (2019) Promoting electrocatalysis upon aerogels. Adv Mater 31(31):1804881. https://doi.org/10.1002/adma.201804881

    Article  CAS  Google Scholar 

  21. Gao Q, Jin Y, Jin Y, Wang X, Ye Z, Hong Z, Zhi M (2018) Synthesis of amorphous MoSx and MoSx/carbon nanotubes composite aerogels as effective hydrogen evolution reaction catalysts. J Sol-Gel Sci Technol 88(1):227–235. https://doi.org/10.1007/s10971-018-4793-9

    Article  CAS  Google Scholar 

  22. Gao Q, Shi Z, Xue K, Ye Z, Hong Z, Yu X, Zhi M (2018) Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances. Nanotechnology 29(21):215601. https://doi.org/10.1088/1361-6528/aab299

    Article  CAS  Google Scholar 

  23. Gao Q, Wang X, Shi Z, Ye Z, Wang W, Zhang N, Hong Z, Zhi M (2018) Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst. Chem Eng J 331:185–193. https://doi.org/10.1016/j.cej.2017.08.067

    Article  CAS  Google Scholar 

  24. Liu W, Rodriguez P, Borchardt L, Foelske A, Yuan J, Herrmann A-K, Geiger D, Zheng Z, Kaskel S, Gaponik N, Kötz R, Schmidt TJ, Eychmüller A (2013) Bimetallic aerogels: high-performance electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed 52(37):9849–9852. https://doi.org/10.1002/anie.201303109

    Article  CAS  Google Scholar 

  25. Henning S, Kühn L, Herranz J, Nachtegaal M, Hübner R, Werheid M, Eychmüller A, Schmidt TJ (2017) Effect of acid washing on the oxygen reduction reaction activity of Pt-Cu aerogel catalysts. Electrochim Acta 233:210–217. https://doi.org/10.1016/j.electacta.2017.03.019

    Article  CAS  Google Scholar 

  26. Oezaslan M, Herrmann A-K, Werheid M, Frenkel AI, Nachtegaal M, Dosche C, Laugier Bonnaud C, Yilmaz HC, Kühn L, Rhiel E, Gaponik N, Eychmüller A, Schmidt TJ (2017) Structural analysis and electrochemical properties of bimetallic palladium–platinum aerogels prepared by a two-step gelation process. ChemCatChem 9(5):798–808. https://doi.org/10.1002/cctc.201600667

    Article  CAS  Google Scholar 

  27. Cai B, Dianat A, Hübner R, Liu W, Wen D, Benad A, Sonntag L, Gemming T, Cuniberti G, Eychmüller A (2017) Multimetallic hierarchical aerogels: shape engineering of the building blocks for efficient electrocatalysis. Adv Mater 29(11):1605254. https://doi.org/10.1002/adma.201605254

    Article  CAS  Google Scholar 

  28. Kühn L, Herrmann A-K, Rutkowski B, Oezaslan M, Nachtegaal M, Klose M, Giebeler L, Gaponik N, Eckert J, Schmidt TJ, Czyrska-Filemonowicz A, Eychmüller A (2016) Alloying behavior of self-assembled noble metal nanoparticles. Chem – A Eur J 22(38):13446–13450. https://doi.org/10.1002/chem.201602487

    Article  CAS  Google Scholar 

  29. Henning S, Kühn L, Herranz J, Durst J, Binninger T, Nachtegaal M, Werheid M, Liu W, Adam M, Kaskel S, Eychmüller A, Schmidt TJ (2016) Pt-Ni aerogels as unsupported electrocatalysts for the oxygen reduction reaction. J Electrochem Soc 163(9):F998–F1003. https://doi.org/10.1149/2.0251609jes

    Article  CAS  Google Scholar 

  30. Cai B, Wen D, Liu W, Herrmann A-K, Benad A, Eychmüller A (2015) Function-led design of aerogels: self-assembly of alloyed PdNi hollow nanospheres for efficient electrocatalysis. Angew Chem Int Ed 54(44):13101–13105. https://doi.org/10.1002/anie.201505307

    Article  CAS  Google Scholar 

  31. Herrmann A-K, Formanek P, Borchardt L, Klose M, Giebeler L, Eckert J, Kaskel S, Gaponik N, Eychmüller A (2014) Multimetallic aerogels by template-free self-assembly of Au, Ag, Pt, and Pd nanoparticles. Chem Mater 26(2):1074–1083. https://doi.org/10.1021/cm4033258

    Article  CAS  Google Scholar 

  32. Herrmann AK, Liu W, Gaponik N, Bigall NC, Eychmuller A (2013) Metal nanoparticle aerogels and their applications. ECS Trans 45(20):149–154. https://doi.org/10.1149/04520.0149ecst

    Article  CAS  Google Scholar 

  33. Hendel T, Lesnyak V, Kühn L, Herrmann A-K, Bigall NC, Borchardt L, Kaskel S, Gaponik N, Eychmüller A (2013) Mixed aerogels from Au and CdTe nanoparticles. Adv Funct Mater 23(15):1903–1911. https://doi.org/10.1002/adfm.201201674

    Article  CAS  Google Scholar 

  34. Liu W, Herrmann A-K, Geiger D, Borchardt L, Simon F, Kaskel S, Gaponik N, Eychmüller A (2012) High-performance electrocatalysis on palladium aerogels. Angew Chem Int Ed 51(23):5743–5747. https://doi.org/10.1002/anie.201108575

    Article  CAS  Google Scholar 

  35. Zhu C, Shi Q, Fu S, Song J, Xia H, Du D, Lin Y (2016) Efficient synthesis of MCu (M = Pd, Pt, and Au) aerogels with accelerated gelation kinetics and their high electrocatalytic activity. Adv Mater 28(39):8779–8783. https://doi.org/10.1002/adma.201602546

    Article  CAS  Google Scholar 

  36. Shi Q, Zhu C, Zhong H, Su D, Li N, Engelhard MH, Xia H, Zhang Q, Feng S, Beckman SP, Du D, Lin Y (2018) Nanovoid incorporated IrxCu metallic aerogels for oxygen evolution reaction catalysis. ACS Energy Lett 3(9):2038–2044. https://doi.org/10.1021/acsenergylett.8b01338

    Article  CAS  Google Scholar 

  37. Deng J, Ren P, Deng D, Bao X (2015) Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem Int Ed 54(7):2100–2104. https://doi.org/10.1002/anie.201409524

    Article  CAS  Google Scholar 

  38. Burpo FJ, Nagelli EA, Morris LA, McClure JP, Ryu MY, Palmer JL (2017) Direct solution-based reduction synthesis of Au, Pd, and Pt aerogels. J Mater Res 32(22):4153–4165. https://doi.org/10.1557/jmr.2017.412

    Article  CAS  Google Scholar 

  39. Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S, Jin MH, Jeong H-K, Kim JM, Choi J-Y, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992. https://doi.org/10.1002/adfm.200900167

    Article  CAS  Google Scholar 

  40. Gupta S, Patel N, Fernandes R, Kadrekar R, Dashora A, Yadav AK, Bhattacharyya D, Jha SN, Miotello A, Kothari DC (2016) Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl Catal B: Environ 192:126–133. https://doi.org/10.1016/j.apcatb.2016.03.032

    Article  CAS  Google Scholar 

  41. Li Y, Zhang X, Hu A, Li M (2018) Morphological variation of electrodeposited nanostructured Ni-Co alloy electrodes and their property for hydrogen evolution reaction. Int J Hydrog Energy 43(49):22012–22020. https://doi.org/10.1016/j.ijhydene.2018.10.038

    Article  CAS  Google Scholar 

  42. Darband GB, Aliofkhazraei M, Rouhaghdam AS, Kiani MA (2019) Three-dimensional Ni-Co alloy hierarchical nanostructure as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction. Appl Surf Sci 465:846–862. https://doi.org/10.1016/j.apsusc.2018.09.204

    Article  CAS  Google Scholar 

  43. Moulder JF, JPE (1995) Handbook of X-ray photoelectron spectroscopy. 230–232

  44. Sun T, Cao J, Dong J, Du H, Zhang H, Chen J, Xu L (2017) Ordered mesoporous NiCo alloys for highly efficient electrocatalytic hydrogen evolution reaction. Int J Hydrog Energy 42(10):6637–6645. https://doi.org/10.1016/j.ijhydene.2017.01.071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the open fund of National Defense Key Discipline Laboratory of New Micro/Nano Devices and System Technology, Zhejiang Provincial Natural Science Foundation of China under Grant No. LY19E020014, and NSFC (Grant Nos. 21303162 and 11604295).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziran Ye or Mingjia Zhi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics

I certify that this manuscript is original and has not been published and will not be submitted elsewhere for publication while being considered by Journal of Sol-Gel Science and Technology. And the study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time. No data have been fabricated or manipulated (including images) to support our conclusions. No data, text, or theories by others are presented as if they were authors’ own. The submission has been received explicitly from all co-authors. And authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Ye, Z., Zhi, M. et al. Synthesis of Co2Ni/reduced graphene oxide composite aerogels as efficient hydrogen evolution catalysts. J Sol-Gel Sci Technol 103, 515–525 (2022). https://doi.org/10.1007/s10971-022-05840-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05840-x

Keywords

Navigation