Skip to main content

Advertisement

Log in

Electrotransport and thermal properties of tetrabutylammonium hydrogen sulfate

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The thermal properties and conductivity of quaternary ammonium compound Bu4NHSO4 were firstly investigated. Tetrabutylammonium hydrogen sulfate is thermally stable up to 260 °C, followed by slow decomposition. It was shown that the enthalpy of Bu4NHSO4 melting is −48.4 J/g. The conductivity of Bu4NHSO4 changes in a wide range: from 10−8 S/cm at 60 °C to 10−2 S/cm in the melt. The conductivity of the melt (165–180 °C) is higher than 10−2 S/cm with activation energy of conductivity 0.5 eV, while activation energy at lower temperatures (50–125 °C) is equal to 0.8 eV. The most important factors affecting the conductivity of the compound are structural characteristics, the nature of the bonding of sulfate tetrahedra, and the energy of hydrogen bonds. The crystal structure of Bu4NHSO4 consists of sulfate tetrahedra pairwise linked into isolated dimers by strong hydrogen bonds with significant distances for proton transfer. It hinders the formation of conductivity pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dockx J (1973) Quaternary ammonium compounds in organic synthesis. Synthesis-Stuttgart 14:441–456

    Google Scholar 

  2. Starks CM, Liotta CL, Halpern ME (1994) Phase-transfer catalysis: fundamentals, applications, and industrial perspectives. Springer, Dordrecht

    Book  Google Scholar 

  3. Watanabe M, Thomas ML, Zhang S, Ueno K, YasudaT DK (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117:7190–7239

    Article  CAS  Google Scholar 

  4. Bureš F (2019) Quaternary ammonium compounds: simple in structure, complex in application. Top Curr Chem 377:14

    Article  Google Scholar 

  5. Chen L, Hu M, Wu P, Feng J (2019) Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics. J Am Ceram Soc 102:4809–4821

    Article  CAS  Google Scholar 

  6. Chen L, Guo J, Zhu Y, Hu M, Feng J (2021) Features of crystal structures and thermo-mechanical properties of weberites RE3NbO7 (RE=La, Nd, Sm, Eu, Gd) ceramics. J Am Ceram Soc 104:404–412

    Article  CAS  Google Scholar 

  7. Das C (2014) Electrical conductance of some tetraalkylammonium bromide salts in 2-butoxyethanol (1) + water (2) mixtures at (298.15, 303.15, 308.15, and 313.15) K. J Chem Eng Data 59:168–175

    Article  CAS  Google Scholar 

  8. Salamanca YP, Blanco LH, Buchner R, Vargas EF (2012) Electrical conductivity studies of tetraalkylammonium bromides in aqueous solutions at several temperatures. J Chem Eng Data 57:2203–2210

    Article  CAS  Google Scholar 

  9. MacFarlane DR, Forsyth M (2001) Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv Mater 13:957–966

    Article  CAS  Google Scholar 

  10. Pringle JM, Howlett PC, MacFarlane DR, Forsyth M (2010) Organic ionic plastic crystals: recent advances. J Mater Chem 20:2056–2062

    Article  CAS  Google Scholar 

  11. Miran MS, Hoque M, Yasuda T, Tsuzuki S, Ueno K, Watanabe M (2019) Key factor governing the physicochemical properties and extent of proton transfer in protic ionic liquids: ΔpKa or chemical structure? Phys Chem Chem Phys 21:418–426

    Article  CAS  Google Scholar 

  12. Greaves TL, Calum J, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237

    Article  CAS  Google Scholar 

  13. Timperman L, Beguin F, Frackowiak E, Anouti M (2014) Comparative study of two protic ionic liquids as electrolyte for electrical double-layer capacitors. J Electrochem Soc 161:A228–A238

    Article  CAS  Google Scholar 

  14. Wei D, Ng TW (2009) Application of novel room temperature ionic liquids in flexible supercapacitors. Electrochem Commun 11:1996–1999

    Article  CAS  Google Scholar 

  15. Lee SY, Ogawa A, Kanno M, Nakamoto H, Yasuda T, Watanabe M (2010) Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J Am Chem Soc 132:9764–9773

    Article  CAS  Google Scholar 

  16. Fedorova IV, Krestyaninov MA, Safonova LP (2021) Structure and ion-ion interactions in trifluoroacetate-based ionic liquids: quantum chemical and molecular dynamics simulation studies. J Mol Liq 328:115449

    Article  CAS  Google Scholar 

  17. Das S, Mondal A, Reddy CM (2020) Harnessing molecular rotations in plastic crystals: a holistic view for crystal engineering of adaptive soft materials. Chem Soc Rev 49:8878–8896

    Article  CAS  Google Scholar 

  18. Siddique TA, Balamurugan S, Said SM, Sairi NA, Normazlan WMDW (2016) Synthesis and characterization of protic ionic liquids as thermoelectrochemical materials. RSC Adv 6:18266–18278

    Article  CAS  Google Scholar 

  19. Shmukler LE, Fedorova IV, Fadeeva YA, Safonova LP (2021) The physicochemical properties and structure of alkylammonium protic ionic liquids of RnH4-nNX (n = 1–3) family. J Mol Liq 321:114350

    Article  CAS  Google Scholar 

  20. Fedorova IV, Safonova LP (2020) Ion pair structures and hydrogen bonding in RnNH4−n alkylammonium ionic liquids with hydrogen sulfate and mesylate anions by DFT computations. J Phys Chem A 124:3170–3179

    Article  CAS  Google Scholar 

  21. Speziali NL, Chapius G (1991) Phase transitions in N(CH3)4HSO4: a novel compound with an incommensurate phase. Acta Cryst B47:757–766

    Article  CAS  Google Scholar 

  22. Kossev K, Sbirkova H, Petrova N, Shivachev B, Nikolova R (2013) Crystal structure and properties of urea and thiourea adducts of tetraalkyl ammonium hydrogen sulphate. Bulg Chem Commun 45:446–454

    CAS  Google Scholar 

  23. Light ME, Gale HMB (2001) Anion–anion dimerization in tetra­butyl­ammonium hydrogen­sulfate. Acta Cryst E57:o705–o706

    Google Scholar 

  24. Pardey AJ, Rivas AB, Longo C, Funaioli T, Fachinetti G (2004) New media in homogeneous catalysis: wet sodium or tetrabutylammonium hydrogensulfate salts for reppe syntheses catalyzed by a Ru (II) carbonyl complex. J Coord Chem 57:871–882

    Article  CAS  Google Scholar 

  25. Stashenko EE, Martinez RJ (2004) Derivatization and solid-phase microextraction. Trends Anal Chem 23:553–561

    Article  CAS  Google Scholar 

  26. Brandenburg K, Putz H (1999) DIAMOND. Crystal Impact GbR, Bonn

    Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation grant №20-13-00302.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valentina G. Ponomareva or Irina N. Bagryantseva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, V.G., Bagryantseva, I.N. & Uvarov, N.F. Electrotransport and thermal properties of tetrabutylammonium hydrogen sulfate. Ionics 27, 2067–2071 (2021). https://doi.org/10.1007/s11581-021-03979-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03979-1

Keywords

Navigation