Skip to main content

Advertisement

Log in

Porous nitrogen–doped carbon-coated nano-silicon/graphite ternary composites as high-rate stability anode for Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Porous nitrogen–doped-carbon-coated nano-Si/graphite ternary composites were prepared by liquid-phase stirring, high-temperature calcination, and acid etching. At the Si and graphite mass ratio of 1:5 in the ternary composites, porous nitrogen–doped-carbon-coated nano-silicon particles were uniformly distributed into the graphite framework, which not only acts as active material for lithium storage but also provides high conductivity for Si particles. The porous amorphous nitrogen–doped carbon shells could further enhance both lithium ion and electrical conductivity of the composite and could also effectively relieve the volume expansion. The composite anode exhibited a highly stable specific capacity of 500 mAh g−1 after 1000 cycles with the capacity retention of 95.5% at a high current density of 2000 mA g−1. It also delivered a good rate performance of 739, 662, 589, and 507 mAh g−1 at the current densities of 300, 500, 1000, and 2000 mA g−1, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954

    Article  CAS  Google Scholar 

  2. Jian K, Chen ZH, Meng XB (2019) CuS and Cu2S as cathode materials for lithium batteries: a review. ChemElectroChem 6:2825–2840

    Article  Google Scholar 

  3. Sun Q, Lau KC, Geng D, Meng X (2018) Atomic and molecular layer deposition for superior lithium-sulfur batteries: strategies, performance, and mechanisms. Batteries & Supercaps 1:40–40

    Article  Google Scholar 

  4. Wang XW, Yang CH, Xiong XH, Chen GL, Huang MZ, Wang JH, Liu Y, Liu ML, Huang K (2019) A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Mater 16:344–353

    Article  Google Scholar 

  5. Wang C, Wang A, Ren L, Guan X, Wang D, Dong A, Zhang C, Li G, Luo J (2019) Controlling Li ion flux through materials innovation for dendrite-free lithium metal anodes. Adv Funct Mater 29:1905940

  6. Meng XB, Liu YZ, Cao YQ, Ren Y, Lu WQ, Elam JW (2017) High-performance high-loading lithium-sulfur batteries by low temperature atomic layer deposition of aluminum oxide on nanophase S cathodes. Adv Mater Interfaces 4:11

    Google Scholar 

  7. Zheng FH, Ou X, Pan QC, Xiong XH, Yang CH, Fu ZY, Liu ML (2018) Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries. Chem Eng J 334:497–507

    Article  CAS  Google Scholar 

  8. Wang A, Zhang X, Yang Y-W, Huang J, Liu X, Luo J (2018) Horizontal centripetal plating in the patterned voids of Li/graphene composites for stable lithium-metal anodes. Chem 4:2192–2200

    Article  CAS  Google Scholar 

  9. Wu L, Zheng J, Wang L, Xiong X, Shao Y, Wang G, Wang J-H, Zhong S, Wu M (2019) PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries. Angew Chem Int Ed 58:811–815

    Article  CAS  Google Scholar 

  10. Zhang X, Lv R, Wang A, Guo W, Liu X, Luo J (2018) MXene aerogel scaffolds for high-rate lithium metal anodes. Angew Chem 57:15028–15033

    Article  CAS  Google Scholar 

  11. Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24

    Article  CAS  Google Scholar 

  12. Lee HY, Lee SM (2002) Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries. J Power Sources 112:649–654

    Article  CAS  Google Scholar 

  13. Li N, Xie Y, Peng S, Xiong X, Han K (2020) Ultra-lightweight Ti3C2T MXene modified separator for Li–S batteries: thickness regulation enabled polysulfide inhibition and lithium ion transportation. J Energy Chem 42:116–125

    Article  Google Scholar 

  14. Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid St 7:A93

    Article  CAS  Google Scholar 

  15. Park CM, Kim JH, Kim H, Sohn HJ (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115–3141

    Article  CAS  PubMed  Google Scholar 

  16. Cai H, Han K, Jiang H, Wang J, Liu H (2017) Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries. J Phys Chem Solids 109:9–17

    Article  CAS  Google Scholar 

  17. Cao W, Chen M, Liu Y, Han K, Chen X, Ye H, Sang S (2019) C2H2O4 etching of AlSi alloy Powder: an efficient and mild preparation approach for high performance micro Si anode. Electrochim Acta 320:134615

    Article  CAS  Google Scholar 

  18. Jiang H, Zhou X, Liu G, Zhou Y, Ye H, Liu Y, Han K (2016) Free-standing Si/graphene paper using Si nanoparticles synthesized by acid-etching Al-Si alloy powder for high-stability Li-ion battery anodes. Electrochim Acta 188:777–784

    Article  CAS  Google Scholar 

  19. Cao W, Han K, Chen M, Ye H, Sang S (2019) Particle size optimization enabled high initial coulombic efficiency and cycling stability of micro-sized porous Si anode via AlSi alloy powder etching. Electrochim Acta 320:134613

    Article  CAS  Google Scholar 

  20. Fang R, Miao C, Mou H, Xiao W (2020) Facile synthesis of Si@TiO2@rGO composite with sandwich-like nanostructure as superior performance anodes for lithium ion batteries. J Alloys Compd 818:152884

    Article  CAS  Google Scholar 

  21. Wang Z, Mao Z, Lai L, Okubo M, Song Y, Zhou Y, Liu X, Huang W (2017) Sub-micron silicon/pyrolyzed carbon@natural graphite self-assembly composite anode material for lithium-ion batteries. Chem Eng J 313:187–196

    Article  CAS  Google Scholar 

  22. Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607

    Article  Google Scholar 

  23. Li Z, Li Z, Zhong W, Li C, Li L, Zhang H (2017) Facile synthesis of ultrasmall Si particles embedded in carbon framework using Si-carbon integration strategy with superior lithium ion storage performance. Chem Eng J 319:1–8

    Article  Google Scholar 

  24. Ryu JH, Kim JW, Sung Y-E, Oh SM (2004) Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid-State Lett 7:A306

    Article  CAS  Google Scholar 

  25. Chan CK, Ruffo R, Hong SS, Cui Y (2009) Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J Power Sources 189:1132–1140

    Article  CAS  Google Scholar 

  26. Xia M, Li Y, Zhou Z, Wu Y, Zhou N, Zhang H, Xiong X (2019) Improving the electrochemical properties of SiO@C anode for high-energy lithium ion battery by adding graphite through fluidization thermal chemical vapor deposition method. Ceram Int 45:1950–1959

    Article  Google Scholar 

  27. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2007) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31

    Article  PubMed  Google Scholar 

  28. Kim H, Seo M, Park MH, Cho J (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem 49:2146–2149

    Article  CAS  Google Scholar 

  29. Yoo JK, Kim J, Jung YS, Kang K (2012) Scalable fabrication of silicon nanotubes and their application to energy storage. Adv Mater 24:5452–5456

    Article  CAS  PubMed  Google Scholar 

  30. Zhou X, Han K, Jiang H, Liu Z, Zhang Z, Ye H, Liu Y (2017) High-rate and long-cycle silicon/porous nitrogen-doped carbon anode via a low-cost facile pre-template-coating approach for Li-ion batteries. Electrochim Acta 245:14–24

    Article  CAS  Google Scholar 

  31. Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Silicon nanotube battery anodes. Nano Lett 9:3844–3847

    Article  CAS  PubMed  Google Scholar 

  32. Zhu C, Han K, Geng D, Ye H, Meng X (2017) Achieving high-performance silicon anodes of lithium-ion batteries via atomic and molecular layer deposited surface coatings: an overview. Electrochim Acta 251:710–728

    Article  CAS  Google Scholar 

  33. Yoshio M, Tsumura T, Dimov N (2005) Electrochemical behaviors of silicon based anode material. J Power Sources 146:10–14

    Article  CAS  Google Scholar 

  34. He D, Bai F, Li L, Shen L, Kung HH, Bao N (2015) Fabrication of sandwich­-structured Si nanoparticles-graphene nanocomposites for high-performance lithium-ion batteries. Electrochim Acta 169:409–415

    Article  CAS  Google Scholar 

  35. Dimov N, Kugino S, Yoshio M (2004) Mixed silicon–graphite composites as anode material for lithium ion batteries. J Power Sources 136:108–114

    Article  CAS  Google Scholar 

  36. Gan L, Guo H, Wang Z, Li X, Peng W, Wang J, Huang S, Su M (2013) A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochim Acta 104:117–123

    Article  CAS  Google Scholar 

  37. Li M, Hou X, Sha Y, Wang J, Hu S, Liu X, Shao Z (2014) Facile spray-drying/pyrolysis synthesis of core–shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries. J Power Sources 248:721–728

    Article  CAS  Google Scholar 

  38. Sui D, Xie Y, Zhao W, Zhang H, Zhou Y, Qin X, Ma Y, Yang Y, Chen Y (2018) A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell. J Power Sources 384:328–333

    Article  CAS  Google Scholar 

  39. Ng SH, Wang J, Wexler D, Chew SY, Hua KL (2007) Amorphous carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J Phys Chem C 111:11131–11138

    Article  CAS  Google Scholar 

  40. Fang R, Xiao W, Miao C, Mei P, Zhang Y, Yan X, Jiang Y (2019) Fabrication of Si–SiO2@Fe/NC composite from industrial waste AlSiFe powders as high stability anodes for lithium ion batteries. Electrochim Acta 324:134860

    Article  CAS  Google Scholar 

  41. Fang R, Xiao W, Miao C, Mei P, Yan X, Zhang Y, Jiang Y (2020) Improved lithium storage performance of pomegranate-like Si@NC/rGO composite anodes by facile in-situ nitrogen doped carbon coating and freeze drying processes. J Alloys Compd 834:155230

    Article  CAS  Google Scholar 

  42. Tian H, Tan X, Xin F, Wang C, Han W (2015) Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy 11:490–499

    Article  CAS  Google Scholar 

  43. Xin X, Zhou X, Wang F, Yao X, Xu X, Zhu Y, Liu Z (2012) A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. J Mater Chem 22:7724

    Article  CAS  Google Scholar 

  44. Kim S-O, Manthiram A (2015) A facile, low-cost synthesis of high-performance silicon-based composite anodes with high tap density for lithium-ion batteries. J Mater Chem A 3:2399–2406

    Article  CAS  Google Scholar 

  45. Han K, Shen J, Hayner CM, Ye H, Kung MC, Kung HH (2014) Li2S-reduced graphene oxide nanocomposites as cathode material for lithium sulfur batteries. J Power Sources 251:331–337

    Article  CAS  Google Scholar 

  46. Zhang Y-C, You Y, Xin S, Yin Y-X, Zhang J, Wang P, Zheng X-s, Cao F-F, Guo Y-G (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127

    Article  CAS  Google Scholar 

  47. Hanai K, Liu Y, Imanishi N, Hirano A, Matsumura M, Ichikawa T, Takeda Y (2005) Electrochemical studies of the Si-based composites with large capacity and good cycling stability as anode materials for rechargeable lithium ion batteries. J Power Sources 146:156–160

    Article  CAS  Google Scholar 

  48. Liu X, Dai Y, Xie J, Zhao H, Lv P, Wang K, Świerczek K (2015) Improvement of silicon-based electrode for Li-ion batteries by formation of Si-TiB2-C nanocomposites. Solid State Ionics 281:60–67

    Article  CAS  Google Scholar 

  49. Forgez C, Vinh Do D, Friedrich G, Morcrette M, Delacourt C (2010) Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J Power Sources 195:2961–2968

    Article  CAS  Google Scholar 

  50. Xu Q, Li J-Y, Sun J-K, Yin Y-X, Wan L-J, Guo Y-G (2017) Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater 7:1601481

    Article  Google Scholar 

  51. Xu T, Lin N, Cai W, Yi Z, Zhou J, Han Y, Zhu Y, Qian Y (2018) Stabilizing Si/graphite composites with Cu and in situ synthesized carbon nanotubes for high-performance Li-ion battery anodes. Inorg Chem Front 5:1463–1469

    Article  CAS  Google Scholar 

  52. Zhang F, Yang X, Xie Y, Yi N, Huang Y, Chen Y (2015) Pyrolytic carbon-coated Si nanoparticles on elastic graphene framework as anode materials for high-performance lithium-ion batteries. Carbon 82:161–167

    Article  CAS  Google Scholar 

  53. Zhang Y, Zhang L, Yin X, Liu Y, He Z, Zhang J (2016) Effects of porosity on in-plane and interlaminar shear strengths of two-dimensional carbon fiber reinforced silicon carbide composites. Mater Des 98:120–127

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21706292), Hunan Provincial Science and Technology Plan Project, China (No. 2016TP1007), and Hunan Provincial Natural Science Foundation of China (No. 2020JJ4107). K. Han was supported by the Innovation-Driven Project of Central South University (No. 2020CX037). X. Chen was supported by the Fundamental Research Funds for the Central Universities of Central South University (No. 2019zzts448).

Author information

Authors and Affiliations

Authors

Contributions

X Chen and Y Xie conducted the experiments and collected all the data; X Xiong and K Han wrote the paper. All authors contributed to the general discussion and data analysis.

Corresponding author

Correspondence to Kai Han.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1570 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xie, Y., Xiong, X. et al. Porous nitrogen–doped carbon-coated nano-silicon/graphite ternary composites as high-rate stability anode for Li-ion batteries. Ionics 27, 1013–1023 (2021). https://doi.org/10.1007/s11581-021-03902-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03902-8

Keywords

Navigation