Skip to main content
Log in

Detection of peroxynitrite anion released from HeLa cells via hyper-cross-linked polymer nanotube modified electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Abnormal expression levels of peroxynitrite anion (ONOO) in human cells have relation to many diseases, especially cancer. Here, we constructed a novel sensing platform for directly detecting ONOO using hyper-cross-linked polymeric nanotubes (HNTs)–modified glassy carbon electrode. The HNTs nanohybrids were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), FT-IR spectroscopy, and cyclic voltammetry (CV). The prepared HNTs/GCE sensor exhibited outstanding performance in detecting ONOO, which provided a wide linear range from 2.34 × 10−8 M to 1.74 × 10−4 M and a low detection limit of 7.43 nM (S/N = 3). Moreover, it was also used to measure the ONOO released from HeLa cells induced by stimulus. The designed sensor may provide great potential for expand applications in the matter of cancer treatment and biomedicine.

Graphical abstract

Scheme 1 Schematic representation for the preparation of HNTs and the detection of ONOO released from HeLa cells stimulated with Cr3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Soffler C (2007) Oxidative stress. Vet Clin North Am Equine Pract 23:135–157

    Article  Google Scholar 

  2. Christopher B, Mandy Z, Susheela T, Clay M (2004) The role of ROS and RNS in regulating life and death of blood monocytes. Curr Pharm Des 10:855–866

    Article  Google Scholar 

  3. Goldstein S, Lind J, Merényi G (2005) Chemistry of peroxynitrites as compared to peroxynitrates. Chem Rev 105:2457–2470

    Article  CAS  Google Scholar 

  4. Perše M (2013) Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? Biomed Res Int 2013:725710

    Article  Google Scholar 

  5. Ma JJ, Wu JS, Liu WM, Wang PF, Fan ZY (2012) Ruthenium(II) complex-based fluorescent sensor for peroxynitrite. Spectrochim Acta A Mol Biomol Spectrosc 94:340–345

    Article  CAS  Google Scholar 

  6. Ferrer-Sueta G, Radi R (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4:161–177

    Article  CAS  Google Scholar 

  7. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  Google Scholar 

  8. Frankenfeld CN, Rosenbaugh MR, Fogarty BA, Lunte SM (2006) Separation and detection of peroxynitrite and its metabolites by capillary electrophoresis with UV detection. J Chromatogr A 1111:147–152

    Article  CAS  Google Scholar 

  9. Yang X, Yao C, Tian T, Li X, Yan H, Wu J, Li H, Pei L, Liu D, Zhu LQ, Lu Y (2018) Synaptic mechanism in Alzheimer’s disease: a selective degeneration of an excitatory synaptic pathway in the CA1 hippocampus that controls spatial learning and memory in Alzheimer’s disease. Mol Psychiatry 23:167

    Article  Google Scholar 

  10. Song ZG, Mao D, Sung SHP, Kwok RTK, Lam JWY, Kong D, Ding D, Tang BZ (2016) Activatable fluorescent Nanoprobe with aggregation-induced emission characteristics for selective in vivo imaging of elevated peroxynitrite generation. Adv Mater 28:7249–7256

    Article  CAS  Google Scholar 

  11. Viera L, Ye YZ, Estévez AG, Beckman JS (1999) [39] Immunohistochemical methods to detect nitrotyrosine. Methods Enzymol 301:373–381

    Article  CAS  Google Scholar 

  12. Yun L, Sella C, Lemaître F, Guille-Collignon M, Amatore C, Thouin L (2018) Downstream simultaneous electrochemical detection of primary reactive oxygen and nitrogen species released by cell populations in an integrated microfluidic device. Anal Chem 90:9386–9394

    Article  Google Scholar 

  13. Amatore C, Arbault S, Bouton C, Drapier JC, Ghandour H, Koh ACW (2008) Real-time amperometric analysis of reactive oxygen and nitrogen species released by single Immunostimulated macrophages. ChemBioChem 9:1472–1480

    Article  CAS  Google Scholar 

  14. Wang Y, Chen ZZ (2010) A novel poly(cyanocobalamin) modified glassy carbon electrode as electrochemical sensor for voltammetric determination of peroxynitrite. Talanta 82:534–539

    Article  CAS  Google Scholar 

  15. Xie Y, Wang TT, Liu XH, Zou K, Deng WQ (2013) Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat Commun 4:1960

    Article  Google Scholar 

  16. Kesanli B, Cui Y, Smith MR, Bittner EW, Bockrath BC, Lin W (2005) Highly interpenetrated metal–organic frameworks for hydrogen storage. Angew Chem 117:74–77

    Article  Google Scholar 

  17. Jiang JX, Su FB, Trewin A, Wood CD, Campbell NL, Niu HJ, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI (2007) Conjugated microporous poly(aryleneethynylene) networks. Angew Chem Int Ed Eng 46:8574–8578

    Article  CAS  Google Scholar 

  18. Li A, Sun HX, Tan DZ, Fan WJ, Wen SH, Qing XJ, Li GX, Li SY, Deng WQ (2011) Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy Environ Sci 4:2062–2065

    Article  CAS  Google Scholar 

  19. Chen L, Honsho Y, Seki S, Jiang DL (2010) Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. J Am Chem Soc 132:6742–6748

    Article  CAS  Google Scholar 

  20. Singh A, Roy S, Das C, Samanta D, Maji T (2018) Metallophthalocyanine-based redox active metal–organic conjugated microporous polymers for OER catalysis. ChemComm 54:4465–4468

    CAS  Google Scholar 

  21. Liao YZ, Cheng ZH, Zuo WW, Thomas A, Faul CFJ (2017) Nitrogen-rich conjugated microporous polymers: facile synthesis, efficient gas storage and heterogeneous catalysis. ACS Appl Mater Interfaces 9:38390–38400

    Article  CAS  Google Scholar 

  22. Song WL, Zhang Y, Varyambath A, Kim I (2019) Guided assembly of well-defined hierarchical nanoporous polymers by Lewis acid−base interactions. ACS Nano 13:11753–11769

    Article  CAS  Google Scholar 

  23. Saha A, Goldstein S, Cabelli D, Czapski G (1998) Determination of optimal conditions for synthesis of peroxynitrite by mixing acidified hydrogen peroxide with nitrite. Free Radic Biol Med 24:653–659

    Article  CAS  Google Scholar 

  24. Xue J, Ying X, Chen J, Xian Y, Jin L (2000) Amperometric ultramicrosensors for peroxynitrite detection and its application toward single myocardial cells. Anal Chem 72:5313–5321

    Article  CAS  Google Scholar 

  25. Velasco JG (2010) Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms. Electroanalysis 9:880–882

    Article  Google Scholar 

  26. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

  27. Cortés JS, Granados S, Ordaz AA, López JA, Griveau S, Bedioui F (2007) Electropolymerized manganese tetraaminophthalocyanine thin films onto platinum ultramicroelectrode for the electrochemical detection of peroxynitrite in solution. Electroanalysis 19:61–64

    Article  Google Scholar 

  28. Li L, Zhang BY, Liu FX, Xue ZH, Lu XQ, Liu XH (2019) Direct sensing of peroxynitrite anion at sensitive hollow tubular organic conjugated microporous polymers modified electrode. Application to selective analysis of ROS and RNS in cells. Sensors and Actuators B: Chemical 306:127560–127568

  29. Peteu S, Peiris P, Gebremichael E, Bayachou M (2010) Nanostructured poly(3,4-ethylenedioxythiophene)-metalloporphyrin films: improved catalytic detection of peroxynitrite. Biosens Bioelectron 25:1914–1921

    Article  CAS  Google Scholar 

  30. Liu FY, Dong H, Tian Y (2019) Real-time monitoring of peroxynitrite (ONOO) in the rat brain by developing a ratiometric electrochemical biosensor. Analyst 144:2150–2157

    Article  CAS  Google Scholar 

  31. Li Y, Sella C, Lemaître F, Guille-Collignon M, Thouin L, Amatore C (2014) Electrochemical detection of nitric oxide and peroxynitrite anion in microchannels at highly sensitive platinum-black coated electrodes. Application to ROS and RNS Mixtures prior to Biological Investigations. Electrochim Acta 144:111–118

    Article  CAS  Google Scholar 

  32. Liu FX, Li L, Zhang BY, Fan WZ, Zhang RJ, Liu GA, Liu XH (2019) A novel electrochemical sensor based on microporous polymeric nanospheres for measuring peroxynitrite anion released by living cells and studying the synergistic effect of antioxidants. Analyst 144:6905–6913

    Article  CAS  Google Scholar 

  33. Awasthi Y, Ratn A, Prasad R, Kumar M, Trivedi SP (2018) An in vivo analysis of Cr6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793). Aquat Toxicol 200:158–167

    Article  CAS  Google Scholar 

  34. Cobo JM, Castiñeira M (1997) Oxidative stress, mitochondrial respiration, and glycemic control: clues from chronic supplementation with Cr3+ or As3+ to male wistar rats. Nutrition 13:965–970

    Article  CAS  Google Scholar 

  35. Mukhtar H, Ahmad N (2000) Tea polyphenols: prevention of cancer and optimizing health1,2,3. Am J Clin Nutr 71:1698S–1702S

    Article  CAS  Google Scholar 

  36. Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133:3275S–3284S

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21565021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Supplementary data associated with this article can be found in the online version of the article. (DOC 4900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Liu, F., Fan, W. et al. Detection of peroxynitrite anion released from HeLa cells via hyper-cross-linked polymer nanotube modified electrode. Ionics 27, 1331–1337 (2021). https://doi.org/10.1007/s11581-020-03887-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03887-w

Keywords

Navigation