Skip to main content

Advertisement

Log in

Porous structure O-rich carbon nanotubes as anode material for sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon materials with high electronic conductivity and high surface area show obvious advantage as anode material for commercial sodium-ion batteries. Here, carbon nanotubes (CNTs) with porous and disordered structures (PCNTs) are synthesized via a facile K2CO3-assisted activation method. The open porous structures (specific surface areas of 444 m2 g−1) and abundant defects (O defects content of 7.2 at%) may not only shorten the transport path of Na ion, increase contact interface between electrolyte and electrode, but also facilitate the reversible capacity of Na storage. In addition, the 3D CNT conductive network improves the electronic conductivity. PCNT anode displays a favorable reversible capacity of 255 mAh g−1 after 200 cycles at 0.1 A g−1, with an initial Coulombic efficiency of 60% and excellent rate capability of 187 mAh g−1 at 2.00 A g−1. This work gives a simple strategy for manufacturing porous CNT anode for advanced energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pomerantseva E, Bonaccorso F, Feng XL, Cui Y, Gogotsi Y (2019) Energy storage: the future enabled by nanomaterials. Science 366(6468):eaan8285

    Article  CAS  Google Scholar 

  2. Qi SH, Wu DX, Dong Y, Liao JQ, Foster CW, O’Dwyer C, Feng YZ, Liu CT, Ma JM (2019) Cobalt-based electrode materials for sodium-ion batteries. Chem Eng J 370:185–207

    Article  CAS  Google Scholar 

  3. Li GZ, Huang B, Pan ZF, Su XY, Shao ZP, An L (2019) Advances in three-dimensional graphene-based materials: configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy Environ Sci 12(7):2030–2053

    Article  CAS  Google Scholar 

  4. Wang QS, Mao BB, Stoliarov SI, Sun JH (2019) A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energ Combust 73:95–131

    Article  Google Scholar 

  5. Han WW, Zhou Y, Zhu T, Chu HQ (2020) Combustion synthesis of defect-rich carbon nanotubes as anodes for sodium-ion batteries. Appl Surf Sci 520:146317

    Article  CAS  Google Scholar 

  6. Sun Y, Guo SH, Zhou HS (2019) Exploration of advanced electrode materials for rechargeable sodium-ion batteries. Adv Energy Mater 9(23):1800212

    Article  Google Scholar 

  7. Li F, Wei ZX, Manthiram A, Feng YZ, Ma JM, Mai LQ (2019) Sodium-based batteries: from critical materials to battery systems. J Mater Chem A 7(16):9406–9431

    Article  CAS  Google Scholar 

  8. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958

    Article  CAS  Google Scholar 

  9. Yan YH, Xia SX, Sun H, Pang YP, Yang JH, Zheng SY (2020) A promising 3D crystalline red P/reduced graphene oxide aerogel architecture anode for sodium-ion batteries. Chem Eng J 393:124788

    Article  CAS  Google Scholar 

  10. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  11. Jian ZL, Xing ZY, Bommier C, Li ZF, Ji XL (2016) Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv Energy Mater 6(3):1501874

    Article  Google Scholar 

  12. Lu P, Sun Y, Xiang HF, Liang X, Yu Y (2018) 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv Energy Mater 8(8):1702434

    Article  Google Scholar 

  13. Wang W, Zhou JH, Wang ZP, Zhao LY, Li PH, Yang Y, Yang C, Huang HX, Guo SJ (2018) Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv Energy Mater 8(5):1701648

    Article  Google Scholar 

  14. Sun N, Guan ZRX, Liu YW, Cao YL, Zhu QZ, Liu H, Wang ZX, Zhang P, Xu B (2019) Extended “Adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv Energy Mater 9(32):1901351

    Article  Google Scholar 

  15. Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147(4):1271–1273

    Article  CAS  Google Scholar 

  16. Cao YL, Xiao LF, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie ZM, Saraf LV, Yang ZG, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12(7):3783–3787

    Article  CAS  Google Scholar 

  17. Kim YE, Yeom SJ, Lee JE, Kang SJ, Kang HS, Lee GH, Kim MJ, Lee SG, Lee HW, Chae HG (2020) Structure-dependent sodium ion storage mechanism of cellulose nanocrystal-based carbon anodes for highly efficient and stable batteries. J Power Sources 468:228371

    Article  CAS  Google Scholar 

  18. Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9(8):1237–1265

    Article  CAS  Google Scholar 

  19. Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2(6):638–654

    Article  CAS  Google Scholar 

  20. Zhao J, Buldum A, Han J, Lu JP (2000) First-principles study of Li-intercalated carbon nanotube ropes. Phys Rev Lett 85(8):1706–1709

    Article  CAS  Google Scholar 

  21. Fang RP, Chen K, Yin LC, Sun ZH, Li F, Cheng HM (2019) The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv Mater 31(9):1800863

    Article  Google Scholar 

  22. Wang W, Kumta PN (2010) Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. ACS Nano 4(4):2233–2241

    Article  CAS  Google Scholar 

  23. Hao J, Pan L, Zhang HC, Chi CX, Guo QJ, Zhao JP, Yang Y, Liu XX, Ma XX, Li Y (2018) A general method for high-performance Li-ion battery Ge composites electrodes from ionic liquid electrodeposition without binders or conductive agents: the cases of CNTs, RGO and PEDOT. Chem Eng J 346:427–437

    Article  CAS  Google Scholar 

  24. Chen YY, Hu XD, Evanko B, Sun XH, Li X, Hou TY, Cai S, Zheng CM, Hu WB, Stucky GD (2018) High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries. Nano Energy 46:117–127

    Article  CAS  Google Scholar 

  25. Yao ZJ, Xia XH, Zhou CA, Zhong Y, Wang YD, Deng SJ, Wang WQ, Wang XL, Tu JP (2018) Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high-rate performance for application in lithium-ion batteries. Adv Sci 5(3):1700786

    Article  Google Scholar 

  26. Li Z, Cao LJ, Chen W, Huang ZC, Liu H (2019) Mesh-like carbon nanosheets with high-level nitrogen doping for high-energy dual-carbon lithium-ion capacitors. Small 15(15):1805173

    Article  Google Scholar 

  27. Jian ZL, Hwang S, Li ZF, Hernandez AS, Wang XF, Xing ZY, Su D, Ji XL (2017) Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv Funct Mater 27(26):1700324

    Article  Google Scholar 

  28. Chen P, Fan Y, Gao YT, Liu Q, Sun YH, Guo T, Huang BL, Wang X, Fu YS (2020) Design and construction of graphitic/amorphous heterophase porous carbon with a lotus-leaf-like surface microstructure for high-performance Li-ion and Na-ion batteries. Ind Eng Chem Res 59(25):11475–11484

    Article  CAS  Google Scholar 

  29. Mubarak N, Ihsan-Ul-Haq M, Huang H, Cui J, Yao SS, Susca A, Wu JX, Wang MY, Zhang XH, Huang BL, Kim JK (2020) Metal-organic framework-induced mesoporous carbon nanofibers as an ultrastable Na metal anode host. J Mater Chem A 8(20):10269–10282

    Article  CAS  Google Scholar 

  30. Zou KX, Guan ZX, Deng YF, Chen GH (2020) Nitrogen-rich porous carbon in ultra-high yield derived from activation of biomass waste by a novel eutectic salt for high performance Li-ion capacitors. Carbon 161:25–35

    Article  CAS  Google Scholar 

  31. Wang HW, Xu DM, Jia GC, Mao ZF, Gong YS, He BB, Wang R, Fan HJ (2020) Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Mater 25:114–123

    Article  Google Scholar 

  32. Xia JL, Yan D, Guo LP, Dong XL, Li WC, Lu AH (2020) Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv Mater 32(21):2000447

    Article  CAS  Google Scholar 

  33. Sun D, Luo B, Wang HY, Tang YG, Ji XB, Wang LZ (2019) Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. Nano Energy 64:103937

    Article  CAS  Google Scholar 

  34. Zhong SY, Liu HZ, Wei DH, Hu J, Zhang H, Hou HS, Peng MX, Zhang GH, Duan HG (2020) Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries. Chem Eng J 395:125054

    Article  CAS  Google Scholar 

  35. Hou HS, Banks CE, Jing MJ, Zhang Y, Ji XB (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27(47):7861–7866

    Article  CAS  Google Scholar 

  36. Zheng WG, Wu M, Yang C, Tang ZG, Hu HN (2020) Carbon nanotube linked NaTi2(PO4)3/C composite with three-dimensional conductive network as superior electrode for sodium ion battery. Ionics 26(6):2883–2890

    Article  CAS  Google Scholar 

  37. Zhu SM, Dong XF, Huang H, Qi M (2020) High capacitive sodium-ion storage in N, P co-doped carbon supported on carbon nanotubes. J Electroanal Chem 870:114200

    Article  CAS  Google Scholar 

  38. Feng WT, Cui YP, Liu W, Wang HL, Zhang Y, Du YX, Liu S, Wang HL, Gao X, Wang TQ (2020) Rigid-flexible coupling carbon skeleton and potassium-carbonate-dominated solid electrolyte interface achieving superior potassium-ion storage. ACS Nano 14(4):4938–4949

    Article  CAS  Google Scholar 

  39. Wang XH, Qi L, Wang HY (2020) Carbon nano-beads collected from candle soot as an anode material with a highly pseudocapacitive Na+ storage capability for dual-ion batteries. Ionics. 26:4533–4542. https://doi.org/10.1007/s11581-020-03630-5

    Article  CAS  Google Scholar 

  40. Hong WW, Zhang Y, Yang L, Tian Y, Ge P, Hu JG, Wei WF, Zou GQ, Hou HS, Ji XB (2019) Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy 65:104038

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Science Foundation of Ningxia Province (No. 2018AAC03022), the Key Research and Development Program of Ningxia Province of China (No. 2018BEE03012), the National First-rate Discipline Construction Project of Ningxia (Chemical Engineering & Technology, NXYLXK2017A04), and the Heilongjiang Provincial Natural Science Foundation of China (No. LH2020B016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 5079 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, J., Xu, L., Bai, J. et al. Porous structure O-rich carbon nanotubes as anode material for sodium-ion batteries. Ionics 27, 667–675 (2021). https://doi.org/10.1007/s11581-020-03882-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03882-1

Keywords

Navigation