Skip to main content
Log in

K+-stabilized nanostructured amorphous manganese dioxide: excellent electrochemical properties as cathode material for sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Various transition metal oxide materials like MnO2 have been reported as cathode for sodium-ion batteries. However, the large sodium-ion radius and migration barrier cause its poor structural stability and low electrochemical performance. Herein, we present a simple pre-potassiation way to stabilize the nanostructure of amorphous manganese dioxide (a-MnO2). The pre-potassiation amorphous manganese dioxide (K-a-MnO2) heating treatment at 400 °C manifests outstanding electrochemical properties in the aspect of specific capacity and cyclic stabilization, the reversible specific capacity maintains at 180.8 mAh g−1 after 200th cycles under a current density of 0.1 C, and it shows a rate capability of 178.2 mAh g−1, 157.5 mAh g−1, 120.8 mAh g−1, 95.5 mAh g−1, 71.4 mAh g−1, and 47.1 mAh g−1 at 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C and 5 C, respectively. The findings exhibit that the pre-potassiation way can stabilize the structural of a-MnO2 and effectively improve its electrochemical performance.

Graphical abstract

The pre-potassiation amorphous manganese dioxide (K-a-MnO2) heating treatment at 400 °C shows a reversible specific capacity maintains at 180.8 mAh g−1 after 200th cycles under a current density of 0.1 C with a high structure stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brian LE, Linda FL (2012) Sodium and sodium-ion energy storage batteries. Solid State Mater Sci 16:168–177

    Article  Google Scholar 

  2. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193

    Article  PubMed  CAS  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  4. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  PubMed  CAS  Google Scholar 

  5. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  6. Liu J, Xia H, Xue D, Lu L (2009) Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc 131:12086–12087

    Article  PubMed  CAS  Google Scholar 

  7. Cui DY, Lu P, Yang H, Liu YN, Xue DF (2011) Mild solution route to mixed-phase MnO2 with enhanced electrochemical capacitance. Funct Mater Lett 4:57–60

    Article  CAS  Google Scholar 

  8. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  PubMed  CAS  Google Scholar 

  9. Ou J, Yang L, Xi X (2016) Flour-assisted simple fabrication of LiCoO2, with enhanced electrochemical performances for lithium ion batteries. J Mater Sci Mater Electron 27:1–7

    Article  Google Scholar 

  10. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  PubMed  CAS  Google Scholar 

  11. Wang X, Hu P, Niu C, Meng J, Xu X, Wei X, Tang C, Luo W, Zhou L, An Q, Mai L (2015) Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv Energy Mater 5:1–8

    Article  Google Scholar 

  12. Talaie E, Duffort V, Smith HL, Fultz B, Nazar LF (2015) Structure of the high voltage phase of layered P2-Nax[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its electrochemical stability. Energy Environ Sci 8:2512–2523

    Article  CAS  Google Scholar 

  13. Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Edit 54:3431–3448

    Article  CAS  Google Scholar 

  14. Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T (2011) Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett 2:2560–2565

    Article  CAS  Google Scholar 

  15. Barker J, Saidi MY, Swoyer JL (2003) A sodium-ion cell based on the fluorophosphate compound NaVPO4F. Electrochem Solid State Lett 6:A1–A4

    Article  CAS  Google Scholar 

  16. Meins JM, Crosnier-Lopez MP, Hemon-Ribaud A, Courbion G (1999) Phase transitions in the Na3M2(PO4)2F3 family: synthesis, thermal, structural, and magnetic studies. J Solid State Chem 148:260–277

    Article  Google Scholar 

  17. Zhao J, He J, Ding X, Zhou J, Ma Y, Wu S, Huang R (2010) A novel sol-gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J Power Sources 195:6854–6859

    Article  CAS  Google Scholar 

  18. Shan QY, Guan B, Zhu SJ, Zhang HJ, Zhang YX (2016) Facile synthesis of carbon-doped graphitic C3N4@MnO2 with enhanced electrochemical performance. RSC Adv 6:83209–83216

    Article  CAS  Google Scholar 

  19. Sun XX, Wang HJ, Lei ZB, Liu ZH, Wei LL (2014) MnO2 nanoflakes grown on 3D graphite network for enhanced electrocapacitive performance. RSC Adv 4:30233–30240

    Article  CAS  Google Scholar 

  20. Liu Y, Xu S, Zhang S, Zhang J, Fan J, Zhou Y (2015) Direct growth of FePO4/reduced graphene oxide nanosheet composites for the sodium-ion battery. J Mater Chem A 3:5501–5508

    Article  CAS  Google Scholar 

  21. Devaraj S, Munichadraiah N (2008) A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J Phys Chem C 11:4406–4417

    Article  Google Scholar 

  22. Liu R, Duan J, Lee SB (2010) Redox exchange induced MnO2 nano-particle enrichment in poly (3, 4-ethylenedioxythiophene) nano-wires for electrochemical energy storage. ACS Nano 4:4299–4307

    Article  PubMed  CAS  Google Scholar 

  23. Yan J, Fan Z, Wei T, Cheng J, Shao B (2009) Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J Power Sources 194:1202–1207

    Article  CAS  Google Scholar 

  24. Fischer AE, Pettigrew KA, Rolison DR, Stroud RM, Long JW (2007) Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett 2:281–286

    Article  Google Scholar 

  25. Mery A, Ghamouss F, Autret C, Farhat D, Tran-Van F (2016) Aqueous ultracapacitors using amorphous MnO2 and reduced graphene oxide. J Power Sources 305:37–45

    Article  CAS  Google Scholar 

  26. Yuan A, Zhang Q (2006) A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte. Electrochem Commun 8:1173–1178

    Article  CAS  Google Scholar 

  27. Pang SC, Anderson MA (2000) Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J Electrochem Soc 147:444–450

    Article  CAS  Google Scholar 

  28. Devarak S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417

    Article  Google Scholar 

  29. Tsang C, Kim J, Manthiram A (1998) Synthesis of manganese oxides by reduction of KMnO4 with KBH4 in aqueous solutions. J. Solid State Chem 137:28–32

    Article  CAS  Google Scholar 

  30. Wei C, Xu C, Li B, Li H, Du DN, Kang F (2013) Anomalous effect of K ions on electrochemical capacitance of amorphous MnO2. J Power Sources 234:1–7

    Article  CAS  Google Scholar 

  31. Liu J, Makwana V, Cai J, Sui SL, Aindow M (2003) Effects of alkali metal and ammonium cation templates on nanofibrous cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2). J Phys Chem B 107:9185–9194

    Article  CAS  Google Scholar 

  32. Xu JJ, Yang J (2003) Nanostructured amorphous manganese oxide cryogel as a high-rate lithium intercalation host. Electrochem Commun 5:230–235

    Article  CAS  Google Scholar 

  33. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous [alpha]-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151

    Article  PubMed  CAS  Google Scholar 

  34. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J Phys Chem C 111:14925–14931

    Article  CAS  Google Scholar 

  35. Gummow RJ, Tiles DC, Thackeray MM (1993) Lithium extraction from orthorhombic lithium manganese oxide and the phase transformation to spinel. Mater Res Bull 28:1249–1256

    Article  CAS  Google Scholar 

  36. Reed J, Cedar G, Ven AVD (2004) Layered-to-spinel phase transition in LixMnO2. Electrochem Solid-State Lett 4:A78–A81

    Article  Google Scholar 

  37. Rossouw MH, Thackeray MM (1991) Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications. Mater. Res Bull 26:463–473

    Article  CAS  Google Scholar 

  38. David WIF, Thackeray MM, Bruce PG, Goodenough JB (1983) Lithium insertion into manganese spinels. Mater Res Bull 18:461–472

    Article  Google Scholar 

  39. Thackeray MM (1997) Manganese oxides for lithium batteries. Prog Solid State Chem 25:1–71

    Article  CAS  Google Scholar 

  40. Xu JJ, Ye H, Jain G, Y J (2004) Amorphous manganese oxide remains amorphous upon lithium intercalation and cycling. Electrochem Commun 6:892–897

    Article  CAS  Google Scholar 

  41. Feng Q, Kanoh H, Miyai Y, Ooi K (1995) Alkali metal ions insertion/extraction reactions with Hollandite-type manganese oxide in the aqueous phase. Chem Mater 7:148–153

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Science and Technology Commission of Shanghai Municipality (19DZ2271100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxi Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Chen, T., Cao, Y. et al. K+-stabilized nanostructured amorphous manganese dioxide: excellent electrochemical properties as cathode material for sodium-ion batteries. Ionics 27, 1559–1567 (2021). https://doi.org/10.1007/s11581-020-03880-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03880-3

Keywords

Navigation