Skip to main content

Advertisement

Log in

In situ micro-current collector of amorphous manganese dioxide as cathode material for sodium-ion batteries

  • Original Paperf
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Amorphous manganese dioxide (a-MnO2) as an ideal cathode in sodium-ion batteries (SIBs) possesses a higher theoretical capacity (308 mAh g−1), low cost and high-rate capability due to its smaller particle size (5–50 nm) and the abundant manganese in the earth. However, the low electronic conductivity brings a poor cycle stability. In this work, we have prepared a-MnO2 material with an in-situ composite polyaniline (PANI) layer as cathode for SIBs. The composite cathode material shows a reversible specific capacity of 175.4 mAh g−1 and keeps at 173.2 mAh g−1 after 200 cycles at 0.1 C in SIBs. The electrochemical impedance (EIS) and galvanostatic intermittent titration technique (GITT) indicate that this material shows a higher electronic conductivity and outstanding Na-ion storage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Choi S, Wang G (2018) Advanced lithium-ion batteries for practical applications: technology, development, and future perspectives. Adv Mater Technol 3:9. https://doi.org/10.1002/admt.201700376

    Article  CAS  Google Scholar 

  2. Gupta A, Manthiram A (2020) Designing advanced lithium-based batteries for low-temperature conditions. Adv Energy Mater 10:38. https://doi.org/10.1002/aenm.202001972

    Article  CAS  Google Scholar 

  3. Zhu YH, Yang XY, Liu T, Zhang XB (2020) Flexible 1D Batteries: recent progress and prospects. Adv Mater 32:5. https://doi.org/10.1002/adma.201901961

    Article  CAS  Google Scholar 

  4. Wang T, Li K, Le Q, Zhu S, Guo X, Jiang D, Zhang Y (2021) Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors. J Colloid Inter Sci 594:812–823. https://doi.org/10.1016/j.jcis.2021.03.075

    Article  CAS  Google Scholar 

  5. Li K, Hu Z, Zhao R, Zhou J, Jing C, Sun Q, Rao J, Yao K, Dong B, Liu X, Li H, Zhang Y, Ji J (2021) A multidimensional rational design of nickel-iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors. J Colloid Inter Sci 603:799–809. https://doi.org/10.1016/j.jcis.2021.06.131

    Article  CAS  Google Scholar 

  6. Li K, Liu X, Zheng T, Jiang D, Zhou Z, Liu C, Zhang X, Zhang Y, Losic D (2019) Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem Eng J 370:136–147. https://doi.org/10.1016/j.cej.2019.03.190

    Article  CAS  Google Scholar 

  7. Li K, Feng S, Jing C, Chen Y, Liu X, Zhang Y, Zhou L (2019) Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem Commun 55:13773–13776. https://doi.org/10.1039/c9cc06791d

    Article  CAS  Google Scholar 

  8. Afyon S, Woerle M, Nesper R (2013) A lithium-rich compound Li7Mn(BO3)3 containing Mn2+ in tetrahedral coordination: a cathode candidate for lithium-ion batteries. Angew Chem Int Edit 52(48):12541–12544. https://doi.org/10.1002/anie.201307655

    Article  CAS  Google Scholar 

  9. Alias N, Mohamad AA (2015) Advances of aqueous rechargeable lithium-ion battery: a review. J Power Sources 274:237–251. https://doi.org/10.1016/j.jpowsour.2014.10.009

    Article  CAS  Google Scholar 

  10. Gupta D, Cai C, Koenig GM (2021) Comparative analysis of chemical redox between redox shuttles and a lithium-ion cathode material via electrochemical analysis of redox shuttle conversion. J Electrochem Soc 168:5. https://doi.org/10.1149/1945-7111/ac0068

    Article  CAS  Google Scholar 

  11. Huang Q, Wang Q (2016) Redox-assisted Li+ storage in lithium-ion batteries. Chinese Phys B 25:1. https://doi.org/10.1088/1674-1056/25/1/018213

    Article  CAS  Google Scholar 

  12. Liu H, Liu X, Li W, Guo X, Wang Y, Wang G, Zhao D (2017) Porous carbon composites for next generation rechargeable lithium batteries. Adv Energy Mater 7:24. https://doi.org/10.1002/aenm.201700283

    Article  CAS  Google Scholar 

  13. Kulova TL, Fateev VN, Seregina EA, Grigoriev AS (2020) A brief review of post-lithium-ion batteries. Int J Electrochem Sci 15(8):7242–7259. https://doi.org/10.20964/2020.08.22

    Article  CAS  Google Scholar 

  14. Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Edit 57(1):102–120. https://doi.org/10.1002/anie.201703772

    Article  CAS  Google Scholar 

  15. Schipper F, Aurbach D (2016) A brief review: past, present and future of lithium ion batteries. Russ J Electrochem 52(12):1095–1121. https://doi.org/10.1134/S102319351612012

    Article  CAS  Google Scholar 

  16. Walter M, Kovalenko MV, Kravchyk KV (2020) Challenges and benefits of post lithium-ion batteries. New J Chem 44(5):1677–1683. https://doi.org/10.1039/C9NJ05682C

    Article  CAS  Google Scholar 

  17. Aparicio PA, Leeuw NH (2020) Electronic structure, ion diffusion and cation doping in the Na4VO(PO4)2 compound as a cathode material for Na-ion batteries. Physical Chem Chem Phys 22(12):6653–6659. https://doi.org/10.1039/C9CP05559B

    Article  CAS  Google Scholar 

  18. Cai Y, Cao X, Luo Z, Fang G, Liu F, Zhou J, Pan A, Liang S (2018) Caging Na3V2(PO4), 2F–3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long term cycling. Adv Sci 5:9. https://doi.org/10.1002/advs.201800680

    Article  CAS  Google Scholar 

  19. Chen M, Hua W, Xiao J, Cortiel D, Chen W, Wang E, Hu Z, Gu Q, Wang X, Indris S, Chou SL, Dou SX, NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat Commun 2019, 10. https://doi.org/10.1038/s41467-019-09170-5.

  20. Chou S, Yu Y (2017) Next generation batteries: aim for the future. Adv Energy Mater 7:24. https://doi.org/10.1002/aenm.201703223

    Article  CAS  Google Scholar 

  21. Sun H, Zhang W, Hu M (2018) Prussian blue analogue mesoframes for enhanced aqueous sodium-ion storage. Curr Comput-Aided Drug Des 8:1. https://doi.org/10.3390/cryst8010023

    Article  CAS  Google Scholar 

  22. Wu C, Hua W, Zhang Z, Zhong B, Yang Z, Feng G, Xiang W, Wu Z, Guo X (2018) Design and synthesis of layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid structures with enhanced electrochemical behavior for sodium-ion batteries. Adv Sci 5:9. https://doi.org/10.1002/advs.201800519

    Article  CAS  Google Scholar 

  23. Lee HW, Wang RY, Pasta M, Lee SW, Liu N, Cui Y, Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries, Nat Commun, 2014, 5, https://doi.org/10.1038/ncomms6280.

  24. Palanisamy M, Kim HW, Heo S, Lee E, Kim Y, Insights into the dual-electrode characteristics of layered Na0.5Ni0.25Mn0.75O2 materials for sodium-ion batteries, ACS Appl Mater Inter 2017, 9, 12, 10618–10625, https://doi.org/10.1021/acsami.6b15355.

  25. Sathiya M, Jacquet Q, Doublet ML, Karakulina OM, Hadermann J, Tarascon JM (2018) A Chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Adv Energy Mater 8:1. https://doi.org/10.1002/aenm.201702599

    Article  CAS  Google Scholar 

  26. Sathiya M, Thomas J, Batuk D, Pimenta V, Gopalan R, Tarascon JM (2017) Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes. Chem Mater 29(14):5948–5956. https://doi.org/10.1021/acs.chemmater.7b01542

    Article  CAS  Google Scholar 

  27. Xie Y, Wang H, Xu G, Wang J, Sheng H, Chen Z, Ren Y, Sun CJ, Wen J, Wang J, Miller DJ, Lu J, Amine K, Ma ZF (2016) In operando XRD and TEM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation. Adv Energy Mater 6:24. https://doi.org/10.1002/aenm.201601306

    Article  CAS  Google Scholar 

  28. Xu J, Lee DH, Meng YS (2013) Recent advances in sodium intercalation positive electrode materials for sodium ion batteries. Funct Mater Lett 6:1. https://doi.org/10.1142/S1793604713300016

    Article  CAS  Google Scholar 

  29. Tompsett DA, Islam MS (2013) Electrochemistry of Hollandite alpha-MnO2: Li-Ion and Na-Ion insertion and Li2O incorporation. Chem Mater 25(12):2515–2526. https://doi.org/10.1021/cm400864n

    Article  CAS  Google Scholar 

  30. Chae E, Gim J, Song J, Kim S, Mathew V, Han J, Boo S, Kim J (2013) Mesoporous manganese dioxide cathode prepared by an ambient temperature synthesis for Na-ion batteries. RSC Adv 3(48):26328–26333. https://doi.org/10.1039/C3RA42897D

    Article  CAS  Google Scholar 

  31. Su D, Ahn HJ, Wang G, beta-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries, NPG Asia Mater. 2013, 5, https://doi.org/10.1038/am.2013.56.

  32. Biswal A, Tripathy BC, Subbaiah T, Meyrick D, Minakshi M (2015) Dual effect of anionic surfactants in the electrodeposited MnO2 trafficking redox ions for energy storage. J Electrochem Soc 162(1):A30–A38. https://doi.org/10.1149/2.0191501jes

    Article  CAS  Google Scholar 

  33. Liu Y, Qiao Y, Zhang W, Wang H, Chen K, Zhu H, Li Z, Huang Y (2015) Nanostructured alkali cation incorporated delta-MnO2 cathode materials for aqueous sodium-ion batteries. J Mater Chem A 3(15):7780–7785. https://doi.org/10.1039/C5TA00396B

    Article  CAS  Google Scholar 

  34. Rjeily JA, Bezza I, Laziz NA, Neacsa D, Autret-Lambert C, Ghamouss F, P2-Na0.67Mn0.85Al0.15O2 and NaMn2O4 blend as cathode materials for sodium-ion batteries using a natural beta-MnO2 precursor, ACS Omega. 2021, 6, 2, 1064–1072, https://doi.org/10.1021/acsomega.0c01647.

  35. Shan X, Charles DS, Xu W, Feygenson M, Su D, Teng X (2018) Biphase cobalt-manganese oxide with high capacity and rate performance for aqueous sodium-ion electrochemical energy storage. Adv Funct Mater 28:3. https://doi.org/10.1002/adfm.201703266

    Article  CAS  Google Scholar 

  36. Song J, Xiao B, Lin Y, Xu K, Li X (2018) Interphases in sodium-ion batteries. Adv Energy Mater 8:17. https://doi.org/10.1002/adfm.201703266

    Article  CAS  Google Scholar 

  37. Stansby JH, Sharma N, Goonetilleke D (2020) Probing the charged state of layered positive electrodes in sodium-ion batteries: reaction pathways, stability and opportunities. J Mater Chem A 8(47):24833–24867. https://doi.org/10.1039/D0TA09553B

    Article  CAS  Google Scholar 

  38. Wang Y, Feng Z, Cui P, Zhu W, Gong Y, Girard MA, Lajoie G, Trottier J, Zhang Q, Gu L, Wang Y, Zuo W, Yang Y, Goodenough JB, Zaghib K (2021) Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nat Commun 12:1. https://doi.org/10.1038/s41467-020-20169-1

    Article  CAS  Google Scholar 

  39. Cai Y, Chua R, Huang S, Ren H, Srinivasan M, Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery. Chem Eng J, 2020, 396, https://doi.org/10.1016/j.cej.2020.125221.

  40. Wang R, Chen T, Cao Y, Wang N, Zhang J (2021) K+-stabilized nanostructured amorphous manganese dioxide: excellent electrochemical properties as cathode material for sodium-ion batteries. Ionics 27(4):1559–1567. https://doi.org/10.1007/s11581-020-03880-3

    Article  CAS  Google Scholar 

  41. Zhou Y, Chen T, Zhang J, Liu Y, Ren P (2017) Amorphous MnO2 as cathode material for sodium-ion batteries. Chinese J Chem 35(8):1294–1298. https://doi.org/10.1002/cjoc.201600915

    Article  CAS  Google Scholar 

  42. Huang J, Wang Z, Hou M, Dong X, Liu Y, Wang Y, Xia Y, Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery, Nat Commun 2018, 9, 1, 2906, https://doi.org/10.1038/s41467-018-04949-4.

  43. Wang YG, Wu W, Cheng L, He P, Wang CX, Xia YY (2008) A Polyaniline-intercalated layered manganese oxide nanocomposite prepared by an inorganic/organic interface reaction and its high electrochemical performance for Li storage. Adv Mater 20(11):2166–2170. https://doi.org/10.1002/adma.200701708

    Article  CAS  Google Scholar 

  44. Ryu S, Wang JE, Kim JH, Ruffo R, Jung YH, Kim DK. A study on cobalt substitution in sodium manganese mixed-anion phosphates as positive electrode materials for Na-ion batteries, J. Power Sources, 2019, 444, https://doi.org/10.1016/j.jpowsour.2019.227274.

  45. Luo R, Wu F, Xie M, Ying Y, Zhou J, Huang Y, Ye Y, Li L, Chen R (2018) Habit plane-driven P2-type manganese-based layered oxide as long cycling cathode for Na-ion batteries. J Power Sources 383:80–86. https://doi.org/10.1016/j.jpowsour.2018.02.053

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the funding supported by the Science and Technology Commission of Shanghai Municipality (19DZ2271100), the Shanghai Science & Technology Committee (19DZ2270100, 19DZ1205500), the Natural Science Foundation of Chongqing, China (cstc2021jcyj-msxmX0912), and the Science and Technology Research Program of Chongqing Municipal Education. Commission (KJQN202100739)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjie Cao, Jianhang Huang or Junxi Zhang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1039 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Liu, Z., Zhao, D. et al. In situ micro-current collector of amorphous manganese dioxide as cathode material for sodium-ion batteries. Ionics 28, 1211–1217 (2022). https://doi.org/10.1007/s11581-021-04403-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04403-4

Keywords

Navigation