Skip to main content
Log in

Vapor pressure and specific electrical conductivity in the H2O–LiH2PO4–LiPO3 system—a novel electrolyte for water electrolysis at elevated temperature

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium dihydrogen phosphate, LiH2PO4 (LDP), was studied for water electrolysis at elevated temperatures. It is shown that pure LDP, melting at ~ 224 °C and with correct DSC and X-ray diffraction diagram, in presence of sufficient humidity is stable up to 360 °C. Both solid and liquid LDP is structurally disordered and superprotonic conducting with conductivities reaching 0.48 S*cm−1, when determined in sealed conductivity cells. The vapor pressure above LDP, pure and mixed with LiPO3 or H2O, was determined by means of Raman spectroscopy based on N2 as internal reference gas. Pressures up to ~ 20 bar at 350 °C were found and conductivities are given for solid and liquid states. Water splitting by electrolysis, 2H2O ➔ 2H2 + O2, was demonstrated by Raman spectroscopy at ~ 225 °C and ~ 4.2 bar with Pt/W electrodes, thus showing that molten LDP has a significant potential for elevated temperature water electrolysis with high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Taninouchi YK, Uda T, Awakura Y, Ikeda A, Haile SM (2007) Dehydration behavior of the superprotonic conductor CsH2PO4 at moderate temperatures: 230 to 260 °C. J Mater Chem 17:3182–3189

    Article  CAS  Google Scholar 

  2. Ulleberg Ø, Nakken T, Eté A (2010) The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools. Int J Hydrog Energy 35(5):1841–1852

    Article  CAS  Google Scholar 

  3. Ebbesen SD, Jensen SH, Hauch A, Mogensen MB (2014) High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxidec. Chem Rev 114(21):10697–10734

    Article  CAS  PubMed  Google Scholar 

  4. Götz M, Lefebvre J, Mörs F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renewable power–to–gas: a technological and economic review. Renew Energy 85:1371–1390

    Article  Google Scholar 

  5. Christensen E, Petrushina IM, Nikiforov AV, Berg RW, Bjerrum NJ (2020) CsH2PO4 as electrolyte for the formation of CH4 by electrochemical reduction of CO2. J Electrochem Soc 167:044511. https://doi.org/10.1149/1945-7111/ab75fa

    Article  CAS  Google Scholar 

  6. Goñi-Urtiaga A, Presvytes D, Scott K (2012) Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: review. Int J Hydrog Energy 37:3358–3372

    Article  Google Scholar 

  7. Papandrew AB, Zawodzinski TA (2014) Nickel catalysts for hydrogen evolution from CsH2PO4. J Power Sources 245:171–174

    Article  CAS  Google Scholar 

  8. Bretzler P, Köhler K, Nikiforov AV, Christensen E, Berg RW, Bjerrum NJ (2020) Efficient water splitting electrolysis on a platinum-free tungsten carbide electrocatalyst in molten CsH2PO4 at 350–390 °C. Int J Hydr Energ S0360-3199(20):31947–31949. https://doi.org/10.1016/j.ijhydene.2020.05.145

    Article  CAS  Google Scholar 

  9. Beltzer M (1971) Alkalimetal dihydrogen phosphate melt electrolytes, United States patent, 3615837

  10. Baranov AI, Kopnin EM, Grebenev VV, Sin A, Zaopo A, Dubitsky Y, Caracino P (2007) Influence of humidity and thermal decomposition on the protonic conductivity of single and polycrystalline CsH2PO4. Solid State Ionics 178:657–660

    Article  CAS  Google Scholar 

  11. Taninouchi YK, Uda T, Awakura Y (2008) Dehydration of CsH2PO4 at temperatures higher than 260 °C and the ionic conductivity of liquid product. Solid State Ionics 178:1648–1653

    Article  CAS  Google Scholar 

  12. Nikiforov AV, Berg RW, Petrushina IM, Bjerrum NJ (2016) Specific electrical conductivity in molten potassium dihydrogen phosphate KH2PO4 – an electrolyte for water electrolysis at ∼300 °C. Appl Energy 175:545–550

    Article  CAS  Google Scholar 

  13. Nikiforov AV, Berg RW, Bjerrum NJ (2018) Vapor pressure and specific electrical conductivity in the solid and molten H2O–CsH2PO4–CsPO3 system – a novel electrolyte for water electrolysis at ~225–400 °C. Ionics 24(9):2761–2782. https://doi.org/10.1007/s11581-017-2420-3

    Article  CAS  Google Scholar 

  14. Osterheld RK, Audrieth LF (1952) Polymerization and depolymerization phenomena in phosphate–metaphosphate systems at higher temperatures. I. Condensation reactions involving the potassium hydrogen orthophosphates. J Phys Chem 56(1):38–42

    Article  CAS  Google Scholar 

  15. Thilo E, Grunze H (1955) Der Entwässerungsverlauf der Dihydrogenmonophosphate des Li+, Na+, K+ und NH4+. Z Anorg Allgem Chem 281:262–273

    Article  CAS  Google Scholar 

  16. Osterheld RK, Markowitz MM (1956) Polymerization and depolymerization phenomena in phosphate-metaphosphate systems at higher temperatures. IV. Condensation reactions of alkali metal hydrogen phosphates. J Phys Chem 60:863–867

    Article  CAS  Google Scholar 

  17. Lavrova GV, Bulina NV, Min’kov VS, Matvienko AA (2016) Structure and thermal decomposition of Cs2HPO4·2H2O. Russian J Inorg Chem 61(3):284–290

    Article  CAS  Google Scholar 

  18. Berg RW, Nikiforov AV, Bjerrum NJ (2020) CsH2PO4 is not stable at 260 °C unless confined. Comments to article by C. E. Botez, I. Martinez, A. Price, H. Martinez, and J.H. Leal in J. Phys. Chem. Solids 129 (2019) 324–328. J Phys Chem Solids 136: 109177

  19. Baranov AI, Merinov BV, Tregubchenko AV, Khiznichenko VP, Shuvalov LA, Schagina NM (1989) Fast proton transport in crystals with a dynamically disordered hydrogen-bond network. Solid State Ionics 36(3–4):279–282

    Article  CAS  Google Scholar 

  20. Lee KS (1996) Hidden nature of the high-temperature transitions in crystals of KH2PO4-type: is it a physical change? J Phys Chem Solids 57(3):333–342

    Article  CAS  Google Scholar 

  21. Ortiz E, Vargas RA, Mellander BE (1999) On the high-temperature phase transitions of CsH2PO4: a polymorphic transition? A transition to a superprotonic conducting phase? J Chem Phys 110(10):4847–4853

    Article  CAS  Google Scholar 

  22. Ortiz E, Vargas RA, Mellander BE (1999) On the high-temperature phase transitions of some KDP-family compounds: a structural phase transition? A transition to a bulk–high proton conducting phase? Solid State Ionics 125:177–185

    Article  CAS  Google Scholar 

  23. Bronowska W (2001) Comment on “does the structural superionic phase transition at 231 °C in CsH2PO4 in really not exist?” [J. Chem. Phys. 110, 4847 (1999)]. J Chem Phys 114(1):611–612

    Article  CAS  Google Scholar 

  24. Boysen DA, Haile SM, Liu H, Secco RA (2003) High-temperature behavior of CsH2PO4 under both ambient and high pressure conditions. Chem Mater 15:727–736

    Article  CAS  Google Scholar 

  25. Boysen DA, Uda T, Chisholm CRI, Haile SM (2004) High–performance solid acid fuel cells through humidity stabilization. Science 303(5654):68–70

    Article  CAS  PubMed  Google Scholar 

  26. Park JH (2004) Possible origin of the proton conduction mechanism of CsH2PO4 crystals at high temperatures. Phys Rev B 69:054104–1–054104-6

  27. Baranov AI, Kopnin EM, Grebenev VV, Sin A, Dubitsky Y, Caracino P (2009) Kinetics of the thermal decomposition in CsH2PO4 superprotonic crystal. Phys Status Solidi A 206(1):36–41

    Article  CAS  Google Scholar 

  28. Otomo J, Ishigooka T, Kitano T, Takahashi H, Nagamoto H (2008) Phase transition and proton transport characteristics in CsH2PO4/SiO2 composites. Electrochim Acta 53:8186–8195

    Article  CAS  Google Scholar 

  29. Botez CE, Carbajal D, Adiraju VAK, Tackett RJ, Chianelli RR (2010) Intermediate–temperature polymorphic phase transition in KH2PO4: a synchrotron X-ray diffraction study. J Phys Chem Solids 71:1576–1580

    Article  CAS  Google Scholar 

  30. Chee TH, Shyuan LK, Mohamad AB, Kadhum AAH (2011) CsH2PO4: electrolyte for intermediate temperature fuel cells. Adv Mater Res 239-242(3):2492–2498

    CAS  Google Scholar 

  31. Cai W, Katrusiak A (2013) Structure of the high–pressure phase IV of KH2PO4 (KDP). Dalton Trans 42:863–866

    Article  CAS  PubMed  Google Scholar 

  32. Ettoumi H, Gao Y, Toumi M, Mhiri T (2013) Thermal analysis Raman spectroscopy and complex impedance analysis of Cu2+–doped KDP. Ionics 19(7):1067–1075

    Article  CAS  Google Scholar 

  33. Lee K-S, Ko J-H, Moon J, Lee S, Jeon M (2008) Raman spectroscopic study of LiH2PO4. Solid State Com 145(9):487–492

    Article  CAS  Google Scholar 

  34. Dekhili R, Kauffmann TH, Aroui H, Fontana MD (2018) Phase transformations in LiH2PO4 (LDP) revealed by Raman spectroscopy. Solid State Com 279(9):22–26. https://doi.org/10.1016/j.ssc.2018.04.016

    Article  CAS  Google Scholar 

  35. Kweon JJ, Lee KW, Lee CE, Lee K-S (2011) Nuclear magnetic resonance study of the superprotonic conduction in LiH2PO4. Appl Phys Lett 98(26):262903–1–262903–3

  36. Kweon JJ, Lee KW, Lee K-S, Lee CE (2013) Rotating–frame nuclear magnetic resonance study of the superprotonic conduction in LiH2PO4. Solid State Commun 171:5–7. https://doi.org/10.1016/j.ssc.2013.07.022

    Article  CAS  Google Scholar 

  37. Lee K-S, Moon J, Lee J, Jeon M (2008) High–temperature phase transformations in LiH2PO4 and possible solid–state polymerization. Solid State Com 147(1–2):74–77. https://doi.org/10.1016/j.ssc.2008.04.011

    Article  CAS  Google Scholar 

  38. Lee K-S, Cho J, Kim G, Jeon M (2009) LiH2PO4 crystal as a solid electrolyte. Kor J Mater Res 19(4):220–223. In Korean. Partly repeat of data in reference [37]

  39. Kweon JJ, Lee KW, Lee CE, Lee K-S, Jo YJ (2012) Impedance spectroscopy of the superprotonic conduction in LiH2PO4. Appl Phys Lett 101(1):012905. https://doi.org/10.1063/1.4732790

    Article  CAS  Google Scholar 

  40. Kweon JJ, Fu R, Steven E, Lee CE, Dalal NS (2014) High field MAS NMR and conductivity study of the superionic conductor LiH2PO4: critical role of physisorbed eater in its protonic conductivity. J Phys Chem C 118:13387–13393. https://doi.org/10.1021/jp501531h

    Article  CAS  Google Scholar 

  41. Zapata VH, Castro WA, Vargas RA, Mellander B-E (2007) More studies on the PVOH–LiH2PO4 polymer system. Electrochim Acta 53:1476–1480

    Article  CAS  Google Scholar 

  42. Zapata VH, Castro WA, Vargas RA (2013) Electrical conductivity relaxation in PVOH + LiH2PO4 + Al2O3 polymer composites. Ionics 19:83–89

    Article  CAS  Google Scholar 

  43. Šušiƈ MV, Miniƈ DM (1981) Electric and electrochemical properties of solid LiH2PO4. Solid State Ionics 2:309–314

    Article  Google Scholar 

  44. Huang Y, Zheng F, Zhang X, Li Y, Yin J, Li Q (2013) Tween40 surfactant effect on the formation of nano–sized LiFePO4/C powder via a solid state reaction and their cathode properties. Solid State Ionics 249–250:158–164

    Article  Google Scholar 

  45. Rong BH, Lu YW, Chen QL, Tang K, Liu XW, Yang HZ, Wu XY, Shen F, Tang YF, Chen YF (2013) LiFePO4/C cathode materials prepared by one–step fast carbothermal method using Fe2O3 as raw materials. Advanced Mater Res (ISSN: 1662–8985) 773:709–713. doi:https://doi.org/10.4028/www.scientific.net/AMR.773.709

  46. Zhang B, Ou X, Zheng J-C, Shen C, Ming L, Han Y-D, Wang J-l, Qin S-E (2014) Electrochemical properties of Li2FeP2O7 cathode material synthesized by using different lithium sources. Electrochim Acta 133:1–7. https://doi.org/10.1016/j.electacta.2014.03.188

    Article  CAS  Google Scholar 

  47. Xiao ZW, Hu GR, Du K, Peng ZD (2014) A facile route for synthesis of LiFePO4/C cathode material with nano–sized primary particles. Materials and Product Engineering, Chinese J Chem Eng 22(5):590–595. https://doi.org/10.1016/S1004-9541(14)60067-7

    Article  CAS  Google Scholar 

  48. Béléké AB, Faure C, Röder M, Hovington P, Posset U, Guerfi A, Zaghib K (2016) Chemically fabricated LiFePO4 thin film electrode for transparent batteries and electrochromic devices. Mater Sci Eng B 214:81–86. https://doi.org/10.1016/j.mseb.2016.10.001

    Article  CAS  Google Scholar 

  49. Hou C-P, Ma Y, Zhang H, Geng W-C, Zhang Q-Y (2017) Magnetic activation of a LiFePO4@C composite cathode material. Int J Electrochem Sci 12:3221–3230. https://doi.org/10.20964/2017.04.43

    Article  CAS  Google Scholar 

  50. Berg RW, Nikiforov AV, Petrushina IM, Bjerrum NJ (2016) Water vapor pressure over molten KH2PO4 and demonstration of water electrolysis at ∼300 °C. Appl Energy 180:269–275. https://doi.org/10.1016/j.apenergy.2016.07.123

    Article  CAS  Google Scholar 

  51. Voronov AP, Babenko GN, Puzikov VM, Lurchenko AN (2013) Growth of LiH2PO4 single crystals from phosphate solutions. J Cryst Growth 374:49–52

    Article  CAS  Google Scholar 

  52. Rollet AP, Lauffenburger R (1934) No 12. – Isothermes 0° et 20° du Systèm ternaire, Mémoires Presentés a la Société Chimique, P2O5 – Li2O – H2O. Bull Soc Chim Fr 5(2):146–152

    Google Scholar 

  53. Soboleva LV, Smolsky IL (1997) Growth of lithium dihydrogen phosphate (LiH2PO4) single crystals based on analysis of dissolution diagram for the Li2O–P2O5–H2O system. Kristallografiya 42:762–764 [Crystallogr Reports 42:700–702]

  54. Rumble JR, ed., (2018) Physical constants of organic compounds, Handbook of chemistry and physics, 98th Edition (Internet Version 2018), CRC Press/Taylor & Francis, Boca Raton, FL

  55. Krumgalz BS (1994) Mineral solubility in water at various temperatures. Israel Oceanographic and Limnological Research Ltd., Haifa

    Google Scholar 

  56. Wikipedia®. https://en.wikipedia.org/wiki/Solubility_table. Accessed 22 May 2019

  57. Lee K-S, Oh I-H, Kweon JJ, Lee CE, Ahn S-H (2012) Crystal growth and morphology of LiH2PO4. Mater Chem Phys 136:802–808. https://doi.org/10.1016/j.matchemphys.2012.08.001

    Article  CAS  Google Scholar 

  58. Soboleva LV, Voloshin AE (2004) Me2O–P2O5–H2O solubility phase diagrams and growth of MeH2PO4 single crystals (Me = Li, Na, K, Rb, Cs, NH4). Kristallografiya 49(4):773–777. Translation in Crystallography Reports 49(4):693–697

    Article  CAS  Google Scholar 

  59. Catti M, Ivaldi G (1977) Crystal structure of LiH2PO4, structural topology and hydrogen bonding in the alkaline dihydrogen orthophosphates. Z Kristallogr 146:215–226

    Article  Google Scholar 

  60. Oh IH, Lee K-S, Meven M, Heger G, Lee CE (2010) Crystal structure of LiH2PO4 studied by single–crystal neutron diffraction. J Phys Soc Japan 79(6):074606–1 − 074606-4

  61. Lee K-S, Ko J-H, Schmidt VH (2005) Raman–scattering study of LiH2PO4. J Kor Phys Soc 46(1):104–107

    CAS  Google Scholar 

  62. Nguili N, Suñol JJ, Bulou A, Toumi M (2015) Crystal structure and spectroscopic studies of LiNH4(H2PO4)2 – a new solid acid in the LiH2PO4–NH4H2PO4 system. J Solid State Chem 230:272–278. https://doi.org/10.1016/j.jssc.2015.07.023

    Article  CAS  Google Scholar 

  63. Rhimi T, Nguili N, Guermazi S, Bulou A, Toumi M (2016) Structural and vibrational study a new potassium lithium dihydrogenphosphate KLi(H2PO4)2. Vibr Spectrosc 86:50–60. https://doi.org/10.1016/j.vibspec.2016.05.008

    Article  CAS  Google Scholar 

  64. Naïli H, Mhiri T, Daoud A (2000) Crystal structure, characterisation and vibrational study of a mixed compound Cs0.4Rb0.6H2PO4. Phase Trans 71:271–286

    Article  Google Scholar 

  65. Naïli H, Vendier L, Jaud J, Mhiri T (2001) The influence of partial substitution of phosphorus by arsenic in monoclinic CsH2PO4. X-ray single crystal, vibrational and phase transitions in the mixed CsH2(PO4)0.72(AsO4)0.28. Solid State Sci 3:677–687

    Article  Google Scholar 

  66. Benkhoucha R, Wunderlich B (1978) Crystallization during polymerization of lithium dihydrogen phosphate. I. Nucleation of the macromolecular crystal from the oligomer melt. Z Anorg Allg Chem 444:256–266

    Article  CAS  Google Scholar 

  67. Benkhoucha R, Wunderlich B (1978) Crystallization during polymerization of lithium dihydrogen phosphate. II. Crystal growth by dimer addition. Z Anorg Allg Chem 444:267–276

    Article  CAS  Google Scholar 

  68. Benkhoucha R, Wunderlich B (1979) On the existence of low- and high-temperature crystal forms of lithium polyphosphate. Acta Cryst B35:265–267 http://scripts.iucr.org/cgi-bin/paper?S0567740879003277

    Article  CAS  Google Scholar 

  69. Benkhoucha R, Wunderlich CC, Wunderlich B (1979) Melting and crystallization of a polyphosphate. J Polymer Sci, Polymer Phys Ed 17:2151–2162

    Article  CAS  Google Scholar 

  70. Goñi-Urtiaga A (2014) Thesis: Cesium dihydrogen phosphate as electrolyte for Intermediate Temperature Proton Exchange Membrane Water Electrolysis (IT-PEMWE), School Of Chemical Engineering and Advanced Materials (CEAM), Newcastle University, Newcastle upon Tyne, UK. Chapter 4.4: Physical and Chemical Stability. p. 83–89

  71. Rodier M, Li Q, Berg RW, Bjerrum NJ (2016) Determination of water vapor pressure over corrosive chemicals versus temperature using Raman spectroscopy as exemplified with 85.5% phosphoric acid. Appl Spectrosc 70(7):1186–1194

    Article  CAS  PubMed  Google Scholar 

  72. Liu C, Berg RW (2012) Nonlinearity in intensity versus concentration dependence for the deep UV resonance Raman spectra of toluene and heptane. Appl Spectrosc Rev 48(5):425–437

    Article  Google Scholar 

  73. Bribes JL, Gaufrès R, Monan M, Lapp M, Penney CM (1976) Raman band contours for water vapor as a function of temperature. Appl Phys Letters 28:336–337

    Article  CAS  Google Scholar 

  74. Murphy WF (1978) The ro–vibrational Raman spectra of water vapour ν1 and ν3. Mol Phys 36:727–732

    Article  CAS  Google Scholar 

  75. Avila G, Fernández JM, Maté B, Tejeda G, Montero S (1999) Ro–vibrational Raman cross sections of water vapor in the OH stretching region. J Mol Spectrosc 196:77–92

    Article  CAS  PubMed  Google Scholar 

  76. Berg RW, Maijó Ferré I, Cline Schäffer SJ (2006) Raman spectroscopy evidence of 1:1:1 complex formation during dissolution of WO3 in a melt of K2S2O7:K2SO4. Vib Spectrosc 42:346–352

    Article  CAS  Google Scholar 

  77. Liu C, Berg RW (2012) Determining the spectral resolution of a charge–coupled device (CCD) Raman instrument. Appl Spectrosc 66(9):1034–1043

    Article  CAS  Google Scholar 

  78. Berg RW, Nørbygaard T (2006) Wavenumber calibration of CCD detector Raman spectrometers controlled by a sinus arm drive. Appl Spectrosc Rev 41:165–183

    Article  CAS  Google Scholar 

  79. Berg RW, von Winbush S, Bjerrum NJ (1980) Negative oxidation states of the chalcogenes in molten salts.1. Raman spectroscopic studies on aluminum chlorosulfides formed in chloride and chloroaluminate melts and some related solid and dissolved compounds. Inorg Chem 19:2688–2698

    Article  CAS  Google Scholar 

  80. Lemmon EW, McLinden MO, Friend DG (1998) Thermophysical properties of fluid systems. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, doi:https://doi.org/10.18434/T4D303, (retrieved August 16, 2017)

  81. Jones G, Bradshaw BC (1993) The measurement of the conductance of electrolytes. V. a redetermination of the conductance of standard potassium chloride solutions in absolute units. J Am Chem Soc 55:1780–1800

    Article  Google Scholar 

  82. Shreiner RH, Pratt KW (2004) Standard reference materials: primary standards and standard reference materials for electrolytic conductivity, NIST Special Publication 260–142, U.S. Department of Commerce, Gaitersburg MD

  83. Hjuler HA, Berg RW, Zachariasen K, Bjerrum NJ (1985) Specific conductivity of NaCl–AlCl3 and NaCl–AlCl3–Al2S3 melts. J Chem Eng Data 30:203–208

    Article  CAS  Google Scholar 

  84. Choi BK, Lee MN, Kim JJ (1989) Raman spectra of the NaH2PO4 crystal. J Raman Spectrosc 20(1):11–15

    Article  CAS  Google Scholar 

  85. Romain F, Novak A (1991) Raman study of the high-temperature phase transition in CsH2PO4. J Mol Struct 263:69–74

    Article  CAS  Google Scholar 

  86. Carr CW, Feit MD, Johnson MA, Rubenchik AM (2006) Complex morphology of laser–induced bulk damage in K2H2−xDxPO4 crystals. Appl Phys Lett 89:131901–1–131901-3

  87. Petitpas G, Aceves SM, Matthews MJ, Smith JR (2014) Para–H2 to ortho–H2 conversion in a full–scale automotive cryogenic pressurized hydrogen storage up to 345 bar. Int J. Hydrogen Energ 39:6533–6547. https://doi.org/10.1016/j.ijhydene.2014.01.205

    Article  CAS  Google Scholar 

  88. Stoicheff BP (1957) High resolution Raman spectroscopy of gases IX. Spectra of H2, HD and D2. Canad J. Phys 35:730–741

    CAS  Google Scholar 

  89. Edwards HGM, Farwell DW, Gorvin AC, Long DA (1986) Pure rotational and vibration–rotational Raman spectra of 1H2, 1H2H and 2H2. J Raman Spectrosc 17(1):129–131. https://doi.org/10.1002/jrs.1250170126

    Article  CAS  Google Scholar 

  90. Jennings DE, Weber A, Brault JW (1987) FTS–Raman flame spectroscopy of high–J lines in H2 and D2. J Mol Spectrosc 126(1):19–28. https://doi.org/10.1016/0022-2852(87)90072-5

    Article  CAS  Google Scholar 

  91. Schrötter HW, Klöckner HW (1979) Raman scattering cross sections in gas and liquids. Topics in current physics, vol. 11. In: Weber A (ed) Raman spectroscopy of gases and liquids. Springer Verlag, New York, pp 123–166

    Chapter  Google Scholar 

  92. Schrötter HW (1995) Raman spectra of gasses. In: B. Schrader (ed.) infrared and Raman spectroscopy. Methods and applications. Weinheim, Germany: Wiley VCH, pp. 277–296

  93. Schrötter HW (2001) Raman spectra of gasses. In: Lewis IR, Edwards HGM (eds) Handbook of Raman spectroscopy: from the research laboratory to the process line (practical spectroscopy). CRC Press, Boca Raton, FL, pp 307–348

    Google Scholar 

  94. Garrabos Y, Echargui MA, Marsault-Herail F (1989) Comparison between the density effects on the levels of the Raman spectra of the Fermi resonance doublet of the 12C16O2 and 13C16O2 molecules. J Chem Phys 91(10):5869–5881

    Article  CAS  Google Scholar 

  95. Petrov DV, Matrosov II, Sedinkin DO, Zaripov AR (2018) Raman spectra of nitrogen, carbon dioxide, and hydrogen in a methane environment. Opt Spectrosc 124(1):8–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge general support from the DTU departments of Chemistry and Energy. We thank Larisa Seerup of DTU Energy for performing the differential scanning calorimetry and X-ray measurements. The quartz cells were made by the now-deceased glass blower Jan Patrick Scholer.

Funding

This investigation has been supported by the “ForskEL” research program under grant no. 2016–1-12449 of the Danish Energinet.dk program. We received economic support from the Climate-KIC program TC2018B_2.1.6-CADEL2_P240-1A and the Discovery Grant pool of DTU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Berg.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, R.W., Nikiforov, A.V. & Bjerrum, N.J. Vapor pressure and specific electrical conductivity in the H2O–LiH2PO4–LiPO3 system—a novel electrolyte for water electrolysis at elevated temperature. Ionics 27, 703–719 (2021). https://doi.org/10.1007/s11581-020-03867-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03867-0

Keywords

Navigation