Skip to main content
Log in

Highly stable Na0.67(Ni0.25Mn0.75)1−xCuxO2 cathode substituted by Cu for sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

P2-type Na0.67Ni0.25Mn0.75O2 is considered as one of the most promising cathode materials for sodium-ion batteries due to its high initial capacity and operating voltage based on the Ni2+/Ni4+ redox reaction. However, it suffers from rapid capacity decay caused by P2–O2 phase transition when the cutoff voltage is above 4.2 V (vs. Na+/Na). Herein, a high-voltage phase transition from P2 to an amorphous phase with poor crystallinity has been proved to be the main cause of material deterioration and Mn redox process is another cause. Cu-substituted Na0.67(Ni0.25Mn0.75)1−xCuxO2 (x = 0, 0.05, 0.1, 0.2) with active redox couples of Ni2+/Ni4+ and Cu2+/Cu3+ has been fabricated for solving these issues. It is proved that Cu substitution can reduce the Mn3+/Mn4+ reaction below 3 V (vs. Na+/Na) and suppress the high-voltage phase transition effectively at deep de-sodiated state, resulting in the significantly enhanced cycle life and rate capability of Na0.67Ni0.25Mn0.75O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xiang X, Zhang K, Chen J (2015) Recent advances and prospects of cathode materials for sodium-ion batteries. Adv Mater 27:5343–5364

    Article  CAS  Google Scholar 

  2. Yu ZL, Qu XY, Wan T, Dou AC, Zhou Y, Peng XQ, Su MR, Liu YJ, Chu DW (2019) Synthesis and mechanism of high structural stability of nickel-rich cathode materials by adjusting Li-excess. ACS Appl Mater Interfaces 39:35777–35787

    Article  Google Scholar 

  3. Qu XY, Yu ZL, Ruan DS, Dou AC, Su MR, Zhou Y, Liu YJ, Chu DW (2020) Enhanced electrochemical performance of Ni-rich cathode materials with Li1.3Al0.3Ti1.7(PO4)3 coating. ACS Sustain Chem Eng 8:5819–5830

    Article  CAS  Google Scholar 

  4. Lyu Y, Liu Y, Yu Z-E, Su N, Liu Y, Li W, Li Q, Guo B, Liu B (2019) Recent advances in high energy-density cathode materials for sodium-ion batteries. Sustain Mater Technol 21:e00098

  5. Fan L, Li X (2018) Recent advances in effective protection of sodium metal anode. Nano Energy 53:630–642

  6. Dai Z, Mani U, Tan HT, Yan Q (2017) Advanced cathode materials for sodium-ion batteries: what determines our choices. Small Methods 1:1700098

    Article  Google Scholar 

  7. Yu Z, Xingyu Q, Dou A, Zhou Y, Su M, Liu Y (2020) Carbon-coated cation-disordered rocksalt-type transition metal oxide composites for high energy Li-ion batteries. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.09.001

  8. You Y, Manthiram A (2018) Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv Energy Mater 8:1701785

    Article  Google Scholar 

  9. Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica B+ c 99:81–85

    Article  CAS  Google Scholar 

  10. Kubota K, Yabuuchi N, Yoshida H, Dahbi M, Komaba S (2014) Layered oxides as positive electrode materials for Na-ion batteries. MRS Bull 39:416–422

    Article  CAS  Google Scholar 

  11. Kubota K, Asari T, Yoshida H, Yaabuuchi N, Shiiba H, Nakayama M, Komaba S (2016) Understanding the structural evolution and redox mechanism of a NaFeO2–NaCoO2 solid solution for sodium-ion batteries. Adv Funct Mater 26:6047–6059

    Article  CAS  Google Scholar 

  12. Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2–Na x CoO 2 phase diagram. Nat Mater 10:74–80

    Article  CAS  Google Scholar 

  13. Wang H, Yang B, Liao X-Z, Xu J, Yang D, He Y-S, Ma Z-F (2013) Electrochemical properties of P2-Na2/3 [Ni1/3Mn2/3] O2 cathode material for sodium ion batteries when cycled in different voltage ranges. Electrochim Acta 113:200–204

    Article  CAS  Google Scholar 

  14. Dang R, Chen M, Li Q, Wu K, Lee YL, Hu Z, Xiao X (2018) Na+-conductive Na2Ti3O7-modified P2-type Na2/3Ni1/3Mn2/3O2 via a smart in situ coating approach: suppressing Na+/vacancy ordering and P2–O2 phase transition. ACS Appl Mater Interfaces 11:856–864

    Article  Google Scholar 

  15. Zhang Y-Y, Zhang S-J, Li J-T, Wang K, Zhang Y-C, Liu Q, Xie R-S, Pei Y-R, Huang L, Sun S-G (2019) Improvement of electrochemical properties of P2-type Na2/3Mn2/3Ni1/3O2 sodium ion battery cathode material by water-soluble binders. Electrochim Acta 298:496–504

    Article  CAS  Google Scholar 

  16. Zhao W, Tanaka A, Momosaki K, Yamamoto S, Zhang F, Guo Q, Noguchi H (2015) Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material for sodium ion batteries. Electrochim Acta 170:171–181

    Article  CAS  Google Scholar 

  17. Wang Y, Wang X, Li X, Yu R, Chen M, Tang K, Zhang X (2019) The novel P3-type layered Na0. 65Mn0. 75Ni0. 25O2 oxides doped by non-metallic elements for high performance sodium-ion batteries. Chem Eng J 360:139–147

    Article  CAS  Google Scholar 

  18. Liu Y, Fang X, Zhang A, Shen C, Liu Q, Enaya HA, Zhou C (2016) Layered P2-Na2/3 [Ni1/3Mn2/3] O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification. Nano Energy 27:27–34

    Article  CAS  Google Scholar 

  19. Hong J-H, Wang M-Y, Du Y-Y, Deng L, He G (2019) The role of Zn substitution in P2-type Na 0.67 Ni 0.23 Zn 0.1 Mn 0.67 O 2 cathode for inhibiting the phase transition at high potential and dissolution of manganese at low potential. J Mater Sci Mater Electron 30:4006–4013

    Article  CAS  Google Scholar 

  20. Zhang X-H, Pang W-L, Wan F, Guo J-Z, Lü H-Y, Li J-Y, Xing Y-M, Zhang J-P, Wu X-L (2016) P2–Na2/3Ni1/3Mn5/9Al1/9O2 microparticles as superior cathode material for sodium-ion batteries: enhanced properties and mechanism via graphene connection. ACS Appl Mater Interfaces 8:20650–20659

    Article  CAS  Google Scholar 

  21. Hasa I, Passerini S, Hassoun J (2017) Toward high energy density cathode materials for sodium-ion batteries: investigating the beneficial effect of aluminum doping on the P2-type structure. J Mater Chem A 5:4467–4477

    Article  CAS  Google Scholar 

  22. Luo C, Langrock A, Fan X, Liang Y, Wang C (2017) P2-type transition metal oxides for high performance Na-ion battery cathodes. J Mater Chem A 5:18214–18220

    Article  CAS  Google Scholar 

  23. Wang PF, You Y, Yin YX, Wang YS, Wan LJ, Gu L, Guo YG (2016) Suppressing the P2–O2 phase transition of Na0. 67Mn0. 67Ni0. 33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed 55:7445–7449

    Article  CAS  Google Scholar 

  24. Doubaji S, Ma L, Asfaw HD, Izanzar I, Xu R, Alami J, Lu J, Wu T, Amine K, Edström K (2017) On the P2-Na x Co1–y (Mn2/3Ni1/3) y O2 cathode materials for sodium-ion batteries: synthesis, electrochemical performance, and redox processes occurring during the electrochemical cycling. ACS Appl Mater Interfaces 10:488–501

    Article  Google Scholar 

  25. Yang Q, Wang P-F, Guo J-Z, Chen Z-M, Pang W-L, Huang K-C, Guo Y-G, Wu X-L, Zhang J-P (2018) Advanced P2-Na2/3Ni1/3Mn7/12Fe1/12O2 cathode material with suppressed P2–O2 phase transition toward high-performance sodium-ion battery. ACS Appl Mater Interfaces 10:34272–34282

    Article  CAS  Google Scholar 

  26. Kang W, Zhang Z, Lee P-K, Ng T-W, Li W, Tang Y, Zhang W, Lee C-S, Yu DYW (2015) Copper substituted P2-type Na 0.67 Cu x Mn 1− x O 2: a stable high-power sodium-ion battery cathode. J Mater Chem A 3:22846–22852

    Article  CAS  Google Scholar 

  27. Li Y, Yang Z, Xu S, Mu L, Gu L, Hu YS, Li H, Chen L (2015) Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv Sci 2:1500031

    Article  Google Scholar 

  28. Zheng L, Li J, Obrovac M (2017) Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3–x Cu x Mn2/3O2 in sodium cells. Chem Mater 29:1623–1631

    Article  CAS  Google Scholar 

  29. Wang L, Sun Y-G, Hu L-L, Piao J-Y, Guo J, Manthiram A, Ma J, Cao A-M (2017) Copper-substituted Na 0.67 Ni 0.3− x Cu x Mn 0.7 O 2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. J Mater Chem A 5:8752–8761

    Article  CAS  Google Scholar 

  30. Lu Z, Dahn J (2001) In situ X-ray diffraction study of P 2 Na2/3 [Ni1/3Mn2/3] O 2. J Electrochem Soc 148:A1225–A1229

    Article  CAS  Google Scholar 

  31. Lee DH, Xu J, Meng YS (2013) An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys 15:3304–3312

    Article  CAS  Google Scholar 

  32. Shen Z, Cao L, Rahn CD, Wang C-Y (2013) Least squares galvanostatic intermittent titration technique (LS-GITT) for accurate solid phase diffusivity measurement. J Electrochem Soc 160:A1842–A1846

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (Grant 51874358, 51772333).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanbing Cao or Ke Du.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Liu, Y., Li, W. et al. Highly stable Na0.67(Ni0.25Mn0.75)1−xCuxO2 cathode substituted by Cu for sodium-ion batteries. Ionics 27, 657–666 (2021). https://doi.org/10.1007/s11581-020-03820-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03820-1

Keywords

Navigation