Skip to main content
Log in

La doping and coating enabled by one-step method for high performance Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich cathode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The poor cycle performance and rate capability limit the wide application of lithium-rich cathode materials. Herein, we propose a one-step method for 'La3+' doping and LaMnO3 coating by co-precipitation to improve the electrochemical performance of the Li1.2Mn0.54Ni0.13Co0.13O2. XRD, EDS of the cross section, and TEM successfully confirm that 'La3+' is doped into the material structure and LaMnO3 is uniformly coated on the surface of Li1.2Mn0.54Ni0.13Co0.13O2. The Li1.2Mn0.54-xNi0.13Co0.13LaxO2 (x = 0.03) (abbreviated as LR-NMC@0.03) sample delivers a discharge capacity as high as 248.1 mAh g−1 at 1C compared with that of 212.3 mAh g−1 for the pristine sample. More importantly, the capacity retention for the LR-NMC@0.03 sample after 100 cycles can reach 92.5%, which is significantly higher than that of 76.8% for the pristine sample. The better rate capability and cyclic performance of the LR-NMC@0.03 sample are attributed to the double strengthening effect by both the 'La3+' doping and LaMnO3 coating with better host structural and surface stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium. Nature 414:359–367

    CAS  PubMed  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    CAS  PubMed  Google Scholar 

  3. Melot BC, Tarascon JM (2013) Design and preparation of materials for advanced electrochemical storage. Acc Chem Res 46:1226–1238

    CAS  PubMed  Google Scholar 

  4. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    CAS  PubMed  Google Scholar 

  5. Xu B, Qian D, Wang ZY, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R 73:51–65

    CAS  Google Scholar 

  6. Yaoa X, Xua Z, Yaoa Z, Chenga W, Gaob H, Zhaoa Q, Lia J, Zhoua A (2019) Oxalate co-precipitation synthesis of LiNi0.6Co0.2Mn0.2O2 for low-cost and high-energy lithium-ion batteries. Mater Today Commun 19:262–270

    Google Scholar 

  7. Chen S, He T, Su YF, Lu Y, Ban LY, Chen L, Zhang QY, Wang J, Chen RJ, Wu F (2017) Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode for lithium-ion batteries. ACS Appl Mater Interfaces 9:29732–29743

    CAS  PubMed  Google Scholar 

  8. Tsai YW, Hwang BJ, Ceder G (2005) In-situ x-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling. Chem Rev 17(12):3191–3199

    CAS  Google Scholar 

  9. Wu F, Wang M, Su YF (2009) Effect of TiO2-coating on the electrochemical performances of LiCo1/3Ni1/3Mn1/3O2. J Power Sources 191(2):628–632

    CAS  Google Scholar 

  10. Liu W, Li X, Xiong D, Hao Y, Li J, Kou H, Yan B, Li D, Lu S, Koo A, Adair K, Sun X (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44:111–120

    CAS  Google Scholar 

  11. Xie HM, Wang RS, Ying JR, Zhang LY, Jalbout AF, Yu HY, Yang GL, Pan XM, Su ZM (2006) Optimized LiFePO4–polyacene cathode material for lithium-ion batteries. Adv Mater 18(19):2609–2613

    CAS  Google Scholar 

  12. Wang Y, Wang Y, Hosono E, Wang K, Zhou H (2008) The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 47:7461–7465

    CAS  Google Scholar 

  13. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng HL, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 11:3948–3952

    Google Scholar 

  14. Hosono E, Kudo T, Honma I, Matsuda H, Zhou HS (2009) Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett 3:1045–1051

    Google Scholar 

  15. Liu H, Chen C, Du C et al (2015) Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries. J Mater Chem A 3:2634–2641

    CAS  Google Scholar 

  16. Li B, Yan H, Ma J, Yu P, Xia D, Huang W, Chu W, Wu Z (2014) Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: towards better electrochemical performance. Adv Funct Mater 24:5112–5118

    CAS  Google Scholar 

  17. Nayak PK, Grinblat J, Levi M, Levi E, Kim S, Choi JW, Aurbach D (2016) Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv Energy Mater 6:1502398

    Google Scholar 

  18. Iddir H, Benedek R (2014) First-principles analysis of phase stability in layered-layered composite cathodes for lithium-ion batteries. Chem Mater 26:2407–2413

    CAS  Google Scholar 

  19. Park YJ, Hong YS, Chang SH (2004) Structural investigation and electrochemical behaviour of Li [NixLi1/3-2x/3Mn2/3-x/3]O2 compounds by a simple combustion method. J Power Sources 129:288–295

    CAS  Google Scholar 

  20. Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133:4404–4419

    CAS  PubMed  Google Scholar 

  21. Lee CW, Sun YK, Prakash J (2004) A novel layered Li [Li0.12NizMg0.32−zMn0.56]O2 cathode material for lithium-ion batteries. Electrochim Acta 49:4425–4432

    CAS  Google Scholar 

  22. Park SH, Sun YK (2003) Synthesis and electrochemical properties of layered Li [Li0.15Ni(0.275−x/2)AlxMn(0.575−x/2)]O2 materials prepared by sol-gel method. J Power Sources 119:161–165

    Google Scholar 

  23. Park C, Kim S, Nahm K et al (2008) Structural and electrochemical study of Li [CrxLi(1-x)/3Mn2(1-x)/3]O2 (0≤x≤0.328) cathode materials. J Alloys Compd 449:343–348

    CAS  Google Scholar 

  24. Zhang XF, Belharouak I, Li L, Lei Y, Elam JW, Nie A, Chen XQ, Yassar RS, Axelbaum RL (2013) Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energy Mater 3(10):1209–1307

    Google Scholar 

  25. Kong JZ, Zhai HF, Qian X, Wang M, Wang QZ, Li AD, Li H, Zhou F (2017) Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO. J Alloys Compd 694:848–854

    CAS  Google Scholar 

  26. Wang ZY, Liu EZ, Guo LC, Shi CS, He CN, Li JJ, Zhao NQ (2013) Cycle performance improvement of Li-rich layered cathode material Li [Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf Coat Technol 235:570–576

    CAS  Google Scholar 

  27. Qiu B, Zhang MH, Wu LJ, Wang J, Xia YG, Qian DN, Liu HD, Hy S, Chen Y, An K, Zhu YM, Liu ZP, Meng YS (2016) Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat Commun 7:12108

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Speight JG (2005) Lange’s handbook of chemistry [M]. Mc Graw-Hill, New York

    Google Scholar 

  29. Deng H, Belharouak I, Sun YK (2009) LixNi0.25Mn0.75Oy (0.5 ≤x ≤2,2 ≤y≤2.75) compounds for high –energy lithium –ion batteries. J Mater Chem 19(26):4510–4516

    CAS  Google Scholar 

  30. Jarvis KA, Deng Z, Allard LF (2011) Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. J Mater Chem 23(16):3614–3621

    CAS  Google Scholar 

  31. Myungs T, Izumi K, Komaba S (2005) Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. J Mater Chem 17(14):3695–3704

    Google Scholar 

  32. Ding Y, Zhang P, Jiang Y (2007) Effect of rare earth elements doping on structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O for lithium-ion battery. Solid State Ionics 178:967–971

    CAS  Google Scholar 

  33. Li N, An R, Su YF (2013) The role of yttrium content in improving electrochemical performance of layered lithium -rich cathode materials for Li-ion batteries. J Mater Chem A 1:9760–9767

    CAS  Google Scholar 

  34. Arunkumar TA, Wu Y, Manthiram A (2007) Factors influencing the irreversible oxygen loss and reversible capacity in layered Li [Li1/3Mn2/3]O2-Li [M]O2 (M=Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solutions. Chem Mater 19:3067–3073

    CAS  Google Scholar 

  35. Wu Y, Manthiram A (2006) High capacity, surface-modified layered Li [Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss. Electrochem. Solid-State Lett 9:A221–A224

    CAS  Google Scholar 

  36. Liu W et al (2015) Countering voltage decay and capacity fading of lithium-rich cathode material at 60C by hybrid surface protection layers. Adv Energy Mater 5:201500274

    Google Scholar 

  37. Florian S, Hana B, Mudit D et al (2017) From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv Energy Mater 7:1701682

    Google Scholar 

  38. Ghanty C, Markovsky B, Erickson EM et al (2015) Li+-ion extraction/insertion of Ni-rich Li1+x (NiyCozMnz)wO2 (0.005<x<0.03; y:z=8:1, w≈1) electrodes: in situ XRD and Raman spectroscopy study. ChemElectroChem 2:1479

    CAS  Google Scholar 

  39. Li J, Downie LE, Ma L, Qiu W, Dahn J (2015) Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for Lithium ion batteries. J Electrochem Soc 162:A1401

    CAS  Google Scholar 

  40. Liu J, Yang Y, Yu P, Li Y, Shao H (2006) Electrochemical characterization of LaNi5-xAlx (x=0.1-0.5) in the absence of additives. J Power Sources 161:1435

    CAS  Google Scholar 

  41. Tan KS, Reddy MV, Subba GV, Chowdari BV (2005) Effect of AlPO4-coating on cathodic behaviour of Li (Ni0.8Co0.2)O2. J Power Sources 141:129

    CAS  Google Scholar 

  42. Jafta CJ, Ozoemena KI, Mathe MK, Roos WD (2012) Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochim Acta 85:411–422

    CAS  Google Scholar 

  43. Liu J, Jayan BR, Manthiram A (2010) Conductive surface modification with aluminum of high capacity layered Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. J Phys Chem C 114:9528–9533

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Program of Sichuan Province under grant number 2019YJ0539.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Tang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Han, X., Zhang, W. et al. La doping and coating enabled by one-step method for high performance Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich cathode. Ionics 26, 3737–3747 (2020). https://doi.org/10.1007/s11581-020-03551-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03551-3

Keywords

Navigation