Skip to main content
Log in

Tailoring the metallic composition of Pd, Pt, and Au containing novel trimetallic catalysts to achieve enhanced formic acid electrooxidation activity

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, carbon-supported Pt, PtAu, and PdPtAu catalysts were synthesized via the NaBH4 reduction method. Electrocatalytic activity of the catalysts for formic acid electrooxidation was investigated by using cyclic voltammetry (CV), chronoamperometry (CA), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). X-ray diffraction (XRD), N2 adsorption-desorption, and temperature programmed reduction (TPR) techniques were used for the characterization of the synthesized catalysts. The enhanced electrocatalytic activity was observed for PtAu catalysts by the addition of Pd which can be explained through the synergistic effect between Pd and Au. Pd75Pt5Au20/CNT exhibited the highest catalytic activity of 36.8 mAcm−2, and similar results were also obtained for other trimetallic catalysts containing low amount of Pt. These results lead us to conclude that low Pt content provides higher electrocatalytic activity and CO poisoning tolerance. To our knowledge, the significance of Pd ratio optimization for PdPtAu catalyst system was reported for the first time in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu M, Zhang R, Chen W (2014) Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev 114(10):5117–5160. https://doi.org/10.1021/cr400523y

    Article  CAS  PubMed  Google Scholar 

  2. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270. https://doi.org/10.1021/cr020730k

    Article  CAS  PubMed  Google Scholar 

  3. von Helmolt R, Eberle U (2007) Fuel cell vehicles: status 2007. J Power Sources 165(2):833–843. https://doi.org/10.1016/j.jpowsour.2006.12.073

    Article  CAS  Google Scholar 

  4. Bellosta von Colbe J, Ares J-R, Barale J, Baricco M, Buckley C, Capurso G et al (2019) Application of hydrides in hydrogen storage and compression: achievements, outlook and perspectives. Int J Hydrog Energy 44(15):7780–7808. https://doi.org/10.1016/j.ijhydene.2019.01.104

    Article  CAS  Google Scholar 

  5. Kivrak H, Can M, Duru H, Sahin O (2014) Methanol electrooxidation study on mesoporous silica supported Pt–co direct methanol fuel cell anode. Int J Chem React Eng 12(1):369–375

    Article  Google Scholar 

  6. Wang M, Ma Z, Li R, Tang B, Bao X-Q, Zhang Z et al (2017) Novel flower-like PdAu(cu) anchoring on a 3D rGO-CNT sandwich-stacked framework for highly efficient methanol and ethanol electro-oxidation. Electrochim Acta 227:330–344. https://doi.org/10.1016/j.electacta.2017.01.046

    Article  CAS  Google Scholar 

  7. Lu Y, Chen W (2010) Nanoneedle-covered Pd−Ag nanotubes: high electrocatalytic activity for formic acid oxidation. J Phys Chem C 114(49):21190–21200. https://doi.org/10.1021/jp107768n

    Article  CAS  Google Scholar 

  8. Wang X, Zhu F, He Y, Wang M, Zhang Z, Ma Z, Li R (2016) Highly active carbon supported ternary PdSnPtx (x=0.1–0.7) catalysts for ethanol electro-oxidation in alkaline and acid media. J Colloid Interface Sci 468:200–210. https://doi.org/10.1016/j.jcis.2016.01.068

    Article  CAS  PubMed  Google Scholar 

  9. Kivrak H, Kuliyev S, Tempel H, Schneider J, Uner D (2011) Carbon nanotube structures as support for ethanol electro-oxidation catalysis. Int J Chem React Eng 9(1)

  10. Bulut A, Yurderi M, Alal O, Kivrak H, Kaya M, Zahmakiran M (2018) Synthesis, characterization, and enhanced formic acid electrooxidation activity of carbon supported MnOx promoted Pd nanoparticles. Adv Powder Technol 29(6):1409–1416. https://doi.org/10.1016/j.apt.2018.03.003

    Article  CAS  Google Scholar 

  11. Avci C, Cicek F, Celik Kazici H, Kivrak A, Kivrak H (2018) A novel study on the stepwise electrodeposition approach for the synthesis of Pd based nanoparticles, characterization, and their enhanced electrooxidation activities. Int J Nano Dimens 9(1):15–23

    CAS  Google Scholar 

  12. Çögenli MS, Yurtcan AB (2018) Catalytic activity, stability and impedance behavior of PtRu/C, PtPd/C and PtSn/C bimetallic catalysts toward methanol and formic acid oxidation. Int J Hydrogen Energy 43(23):10698–10709. https://doi.org/10.1016/j.ijhydene.2018.01.081

    Article  CAS  Google Scholar 

  13. Liu X-s HF, Zhu D-r, D-n J, Wang P-p, Ruan Z et al (2011) One-step synthesis of carbon nanotubes with Ni nanoparticles as a catalyst by the microwave-assisted polyol method. J Alloys Compd 509(6):2829–2832. https://doi.org/10.1016/j.jallcom.2010.11.131

    Article  CAS  Google Scholar 

  14. Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182(1):124–132. https://doi.org/10.1016/j.jpowsour.2008.03.075

    Article  CAS  Google Scholar 

  15. Sahin O, Duzenli D, Kivrak H (2016) An ethanol electrooxidation study on carbon-supported Pt-Ru nanoparticles for direct ethanol fuel cells. Energy Source A 38(5):628–634. https://doi.org/10.1080/15567036.2013.809391

    Article  CAS  Google Scholar 

  16. Lu Y, Chen W (2011) One-pot synthesis of heterostructured Pt–Ru nanocrystals for catalytic formic acid oxidation. Chem Commun 47(9):2541–2543. https://doi.org/10.1039/C0CC04047A

    Article  CAS  Google Scholar 

  17. Uhm S, Chung ST, Lee J (2007) Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell. Electrochem Commun 9(8):2027–2031. https://doi.org/10.1016/j.elecom.2007.05.029

    Article  CAS  Google Scholar 

  18. Waszczuk P, Barnard TM, Rice C, Masel RI, Wieckowski A (2002) A nanoparticle catalyst with superior activity for electrooxidation of formic acid. Electrochem Commun 4(7):599–603. https://doi.org/10.1016/S1388-2481(02)00386-7

    Article  CAS  Google Scholar 

  19. Lu Y, Chen W (2012) PdAg alloy nanowires: facile one-step synthesis and high electrocatalytic activity for formic acid oxidation. ACS Catal 2(1):84–90. https://doi.org/10.1021/cs200538g

    Article  CAS  Google Scholar 

  20. Ulas B, Caglar A, Sahin O, Kivrak H (2018) Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. J Colloid Interface Sci 532:47–57. https://doi.org/10.1016/j.jcis.2018.07.120

    Article  CAS  PubMed  Google Scholar 

  21. Ha S, Larsen R, Masel RI (2005) Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells. J Power Sources 144(1):28–34. https://doi.org/10.1016/j.jpowsour.2004.12.031

    Article  CAS  Google Scholar 

  22. Larsen R, Ha S, Zakzeski J, Masel RI (2006) Unusually active palladium-based catalysts for the electrooxidation of formic acid. J Power Sources 157(1):78–84. https://doi.org/10.1016/j.jpowsour.2005.07.066

    Article  CAS  Google Scholar 

  23. Li S-H, Zhao Y, Chu J, Li W-W, Yu H-Q, Liu G, Tian YC (2013) A Pt-Bi bimetallic nanoparticle catalyst for direct electrooxidation of formic acid in fuel cells. Front Environ Sci Eng 7(3):388–394. https://doi.org/10.1007/s11783-012-0475-y

    Article  CAS  Google Scholar 

  24. Ahn M, Kim J (2013) Insights into the electrooxidation of formic acid on Pt and Pd shells on Au core surfaces via SERS at dendritic Au rod electrodes. J Phys Chem 117(46):24438–24445. https://doi.org/10.1021/jp408643a

    Article  CAS  Google Scholar 

  25. Chang J, Sun X, Feng L, Xing W, Qin X, Shao G (2013) Effect of nitrogen-doped acetylene carbon black supported Pd nanocatalyst on formic acid electrooxidation. J Power Sources 239:94–102. https://doi.org/10.1016/j.jpowsour.2013.03.066

    Article  CAS  Google Scholar 

  26. Liao M, Hu Q, Zheng J, Li Y, Zhou H, Zhong C-J et al (2013) Pd decorated Fe/C nanocatalyst for formic acid electrooxidation. Electrochim Acta 111:504–509. https://doi.org/10.1016/j.electacta.2013.08.102

    Article  CAS  Google Scholar 

  27. Yan L, Yao S, Chang J, Liu C, Xing W (2014) Pd oxides/hydrous oxides as highly efficient catalyst for formic acid electrooxidation. J Power Sources 250:128–133. https://doi.org/10.1016/j.jpowsour.2013.10.085

    Article  CAS  Google Scholar 

  28. Marković NM, Gasteiger HA, Ross PN Jr, Jiang X, Villegas I, Weaver MJ (1995) Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces. Electrochim Acta 40(1):91–98. https://doi.org/10.1016/0013-4686(94)00241-R

    Article  Google Scholar 

  29. Malolepszy A, Mazurkiewicz M, Mikolajczuk A, Stobinski L, Borodzinski A, Mierzwa B et al (2011) Influence of Pd-Au/MWCNTs surface treatment on catalytic activity in the formic acid electrooxidation. Phys Status Solidi C 8(11–12):3195–3199. https://doi.org/10.1002/pssc.201100215

    Article  CAS  Google Scholar 

  30. Mehta SK, Gupta S (2013) Synthesis of AuPd alloy nanoparticles and their catalytic activity in the electrooxidation of formic acid and lower alcohols in alkaline media. Sci Adv Mater 5(10):1377–1383. https://doi.org/10.1166/sam.2013.1599

    Article  CAS  Google Scholar 

  31. Mori K, Dojo M, Yamashita H (2013) Pd and Pd–Ag nanoparticles within a macroreticular basic resin: an efficient catalyst for hydrogen production from formic acid decomposition. ACS Catal 3(6):1114–1119. https://doi.org/10.1021/cs400148n

    Article  CAS  Google Scholar 

  32. Wang X, Frenzel J, Wang W, Ji H, Qi Z, Zhang Z et al (2011) Length-scale modulated and electrocatalytic activity enhanced nanoporous gold by doping. J Phys Chem C 115(11):4456–4465. https://doi.org/10.1021/jp110011w

    Article  CAS  Google Scholar 

  33. Kuznetsov VV, Kavyrshina KV, Podlovchenko BI (2012) Formation and electrocatalytic properties of Pd deposits on Mo obtained by galvanic displacement. Russ J Electrochem 48(4):467–473. https://doi.org/10.1134/s1023193512040106

    Article  CAS  Google Scholar 

  34. Tague ME, Gregoire JM, Legard A, Smith E, Dale D, Hennig R et al (2012) High throughput thin film Pt-M alloys for fuel electrooxidation: low concentrations of M (M = Sn, Ta, W, Mo, Ru, Fe, In, Pd, Hf, Zn, Zr, Nb, Sc, Ni, Ti, V, Cr, Rh). J Electrochem Soc 159(12):F880–F8F7. https://doi.org/10.1149/2.003301jes

    Article  CAS  Google Scholar 

  35. Wen W, Li C, Li W, Tian Y (2013) Carbon-supported Pd–Cr electrocatalysts for the electrooxidation of formic acid that demonstrate high activity and stability. Electrochim Acta 109:201–206. https://doi.org/10.1016/j.electacta.2013.07.137

    Article  CAS  Google Scholar 

  36. Wang M, He Y, Li R, Ma Z, Zhang Z, Wang X (2015) Electrochemical activated PtAuCu alloy nanoparticle catalysts for formic acid, methanol and ethanol electro-oxidation. Electrochim Acta 178:259–269. https://doi.org/10.1016/j.electacta.2015.07.157

    Article  CAS  Google Scholar 

  37. Zhu F, Wang M, He Y, Ma G, Zhang Z, Wang X (2014) A comparative study of elemental additives (Ni, Co and Ag) on electrocatalytic activity improvement of PdSn-based catalysts for ethanol and formic acid electro-oxidation. Electrochim Acta 148:291–301. https://doi.org/10.1016/j.electacta.2014.10.062

    Article  CAS  Google Scholar 

  38. Yin M, Li Q, Jensen JO, Huang Y, Cleemann LN, Bjerrum NJ et al (2012) Tungsten carbide promoted Pd and Pd–Co electrocatalysts for formic acid electrooxidation. J Power Sources 219:106–111. https://doi.org/10.1016/j.jpowsour.2012.07.032

    Article  CAS  Google Scholar 

  39. Bharti A, Cheruvally G, Muliankeezhu S (2017) Microwave assisted, facile synthesis of Pt/CNT catalyst for proton exchange membrane fuel cell application. Int J Hydrogen Energy 42(16):11622–11631. https://doi.org/10.1016/j.ijhydene.2017.02.109

    Article  CAS  Google Scholar 

  40. Wang K-C, Huang H-C, Wang C-H (2017) Synthesis of Pd@Pt3Co/C core–shell structure as catalyst for oxygen reduction reaction in proton exchange membrane fuel cell. Int J Hydrogen Energy 42(16):11771–11778. https://doi.org/10.1016/j.ijhydene.2017.03.084

    Article  CAS  Google Scholar 

  41. Hu JE, Liu Z, Eichhorn BW, Jackson GS (2012) CO tolerance of nano-architectured Pt–Mo anode electrocatalysts for PEM fuel cells. Int J Hydrogen Energy 37(15):11268–11275. https://doi.org/10.1016/j.ijhydene.2012.04.094

    Article  CAS  Google Scholar 

  42. Arikan T, Kannan AM, Kadirgan F (2013) Binary Pt–Pd and ternary Pt–Pd–Ru nanoelectrocatalysts for direct methanol fuel cells. Int J Hydrogen Energy 38(6):2900–2907. https://doi.org/10.1016/j.ijhydene.2012.12.052

    Article  CAS  Google Scholar 

  43. Ercelik M, Ozden A, Seker E, Colpan CO (2016) Characterization and performance evaluation of PtRu/CTiO2 anode electrocatalyst for DMFC applications. Int J Hydrogen Energy 42(33):21518–21529. https://doi.org/10.1016/j.ijhydene.2016.12.020

    Article  CAS  Google Scholar 

  44. Xie J, Zhang Q, Gu L, Xu S, Wang P, Liu J et al (2016) Ruthenium–platinum core–shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation. Nano Energy 21:247–257. https://doi.org/10.1016/j.nanoen.2016.01.013

    Article  CAS  Google Scholar 

  45. Hong P, Luo F, Liao S, Zeng J (2011) Effects of Pt/C, Pd/C and PdPt/C anode catalysts on the performance and stability of air breathing direct formic acid fuel cells. Int J Hydrogen Energy 36(14):8518–8524. https://doi.org/10.1016/j.ijhydene.2011.04.081

    Article  CAS  Google Scholar 

  46. Chen G, Li Y, Wang D, Zheng L, You G, Zhong C-J et al (2011) Carbon-supported PtAu alloy nanoparticle catalysts for enhanced electrocatalytic oxidation of formic acid. J Power Sources 196(20):8323–8330. https://doi.org/10.1016/j.jpowsour.2011.06.048

    Article  CAS  Google Scholar 

  47. Chang J, Li S, Feng L, Qin X, Shao G (2014) Effect of carbon material on Pd catalyst for formic acid electrooxidation reaction. J Power Sources 266:481–487. https://doi.org/10.1016/j.jpowsour.2014.05.043

    Article  CAS  Google Scholar 

  48. Rejal SZ, Masdar MS, Kamarudin SK (2014) A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover. Int J Hydrogen Energy 39(19):10267–10274. https://doi.org/10.1016/j.ijhydene.2014.04.149

    Article  CAS  Google Scholar 

  49. Kang S, Lee J, Lee JK, Chung S-Y, Tak Y (2006) Influence of Bi modification of Pt anode catalyst in direct formic acid fuel cells. J Phys Chem 110(14):7270–7274. https://doi.org/10.1021/jp056753v

    Article  CAS  Google Scholar 

  50. Yao S, Li G, Liu C, Xing W (2015) Enhanced catalytic performance of carbon supported palladium nanoparticles by in-situ synthesis for formic acid electrooxidation. J Power Sources 284:355–360. https://doi.org/10.1016/j.jpowsour.2015.02.056

    Article  CAS  Google Scholar 

  51. Xu J, Yuan D, Yang F, Mei D, Zhang Z, Chen Y-X (2013) On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode. Phys Chem Chem Phys 15(12):4367–4376. https://doi.org/10.1039/C3CP44074E

    Article  CAS  PubMed  Google Scholar 

  52. Jiang K, Zhang H-X, Zou S, Cai W-B (2014) Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys Chem Chem Phys 16(38):20360–20376. https://doi.org/10.1039/C4CP03151B

    Article  CAS  PubMed  Google Scholar 

  53. Wang Y, Qi Y, Zhang D (2014) New mechanism of the direct pathway for formic acid oxidation on Pd(111). Comput Theor Chem 1049:51–54. https://doi.org/10.1016/j.comptc.2014.09.020

    Article  CAS  Google Scholar 

  54. Baranova EA, Miles N, Mercier PHJ, Le Page Y, Patarachao B (2010) Formic acid electro-oxidation on carbon supported PdxPt1−x (0≥x≥1) nanoparticles synthesized via modified polyol method. Electrochim Acta 55(27):8182–8188. https://doi.org/10.1016/j.electacta.2009.12.090

    Article  CAS  Google Scholar 

  55. Luo Q, Feng G, Beller M, Jiao H (2012) Formic acid dehydrogenation on Ni(111) and comparison with Pd(111) and Pt(111). J Phys Chem C 116(6):4149–4156. https://doi.org/10.1021/jp209998r

    Article  CAS  Google Scholar 

  56. Zhang R, Liu H, Wang B, Ling L (2012) Insights into the preference of CO2 formation from HCOOH decomposition on Pd surface: a theoretical study. J Phys Chem C 116(42):22266–22280. https://doi.org/10.1021/jp211900z

    Article  CAS  Google Scholar 

  57. Li L, Chen M, Huang G, Yang N, Zhang L, Wang H et al (2014) A green method to prepare Pd–Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation. J Power Sources 263:13–21. https://doi.org/10.1016/j.jpowsour.2014.04.021

    Article  CAS  Google Scholar 

  58. Zhang X-J, Zhang J-M, Zhang P-Y, Li Y, Xiang S, Tang H-G et al (2017) Highly active carbon nanotube-supported Ru@Pd core-shell nanostructure as an efficient electrocatalyst toward ethanol and formic acid oxidation. Mol Catal 436:138–144. https://doi.org/10.1016/j.mcat.2017.04.015

    Article  CAS  Google Scholar 

  59. Luo Y, Estudillo-Wong LA, Cavillo L, Granozzi G, Alonso-Vante N (2016) An easy and cheap chemical route using a MOF precursor to prepare Pd–Cu electrocatalyst for efficient energy conversion cathodes. J Catal 338(Supplement C):135–142. https://doi.org/10.1016/j.jcat.2016.03.001

    Article  CAS  Google Scholar 

  60. Jo Y-G, Kim S-M, Kim J-W, Lee S-Y (2016) Composition-tuned porous Pd-Ag bimetallic dendrites for the enhancement of ethanol oxidation reactions. J Alloys Compd 688:447–453. https://doi.org/10.1016/j.jallcom.2016.07.227

    Article  CAS  Google Scholar 

  61. Feng Y-Y, Liu Z-H, Kong W-Q, Yin Q-Y, Du L-X (2014) Promotion of palladium catalysis by silver for ethanol electro-oxidation in alkaline electrolyte. Int J Hydrogen Energy 39(6):2497–2504. https://doi.org/10.1016/j.ijhydene.2013.12.004

    Article  CAS  Google Scholar 

  62. Gu J, Zhang Y-W, Tao F (2012) Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem Soc Rev 41(24):8050–8065. https://doi.org/10.1039/C2CS35184F

    Article  CAS  PubMed  Google Scholar 

  63. El-Nagar GA, Mohammad AM, El-Deab MS, El-Anadouli BE (2017) Propitious dendritic Cu2O–Pt nanostructured anodes for direct formic acid fuel cells. ACS Appl Mater Interfaces 9(23):19766–19772. https://doi.org/10.1021/acsami.7b01565

    Article  CAS  PubMed  Google Scholar 

  64. Wang J, Yin G, Liu H, Li R, Flemming RL, Sun X (2009) Carbon nanotubes supported Pt–au catalysts for methanol-tolerant oxygen reduction reaction: a comparison between Pt/au and PtAu nanoparticles. J Power Sources 194(2):668–673. https://doi.org/10.1016/j.jpowsour.2009.06.040

    Article  CAS  Google Scholar 

  65. Liao M, Li W, Xi X, Luo C, Gui S, Jiang C et al (2017) Highly active Aucore@Ptcluster catalyst for formic acid electrooxidation. J Electroanal Chem 791(supplement C):124–130. https://doi.org/10.1016/j.jelechem.2017.03.024

    Article  CAS  Google Scholar 

  66. Han Y, Ouyang Y, Xie Z, Chen J, Chang F, Yu G (2016) Controlled growth of Pt–au alloy nanowires and their performance for formic acid electrooxidation. J Mater Sci 32(7):639–645. https://doi.org/10.1016/j.jmst.2016.04.014

    Article  CAS  Google Scholar 

  67. Liu Y, Ding Y, Zhang Y, Lei Y (2012) Pt–au nanocorals, Pt nanofibers and au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environment. Sensors Actuators 171(supplement C):954–961. https://doi.org/10.1016/j.snb.2012.06.009

    Article  CAS  Google Scholar 

  68. Li D, Meng F, Wang H, Jiang X, Zhu Y (2016) Nanoporous AuPt alloy with low Pt content: a remarkable electrocatalyst with enhanced activity towards formic acid electro-oxidation. Electrochim Acta 190:852–861. https://doi.org/10.1016/j.electacta.2016.01.001

    Article  CAS  Google Scholar 

  69. Lowell S, Shields JE (1991) Powder Surface Area and Porosity. Springer, Netherlands

    Google Scholar 

  70. Muneshwar T, Cadien K (2018) Comparing XPS on bare and capped ZrN films grown by plasma enhanced ALD: effect of ambient oxidation. Appl Surf Sci 435:367–376

    Article  CAS  Google Scholar 

  71. Gil J, Ferreira L, Silva V, Oliveira A, de Oliveira R, Jacinto M (2019) Facile fabrication of functionalized core-shell Fe3O4@ SiO2@ Pd microspheres by urea-assisted hydrothermal route and their application in the reduction of nitro compounds. Environ Nanotechnol Monit Manag 11:100220

    Google Scholar 

  72. Militello MC, Simko SJ (1994) Elemental palladium by XPS. Surf Sci Spect 3(4):387–394. https://doi.org/10.1116/1.1247783

    Article  CAS  Google Scholar 

  73. Suhonen S, Valden M, Pessa M, Savimäki A, Härkönen M, Hietikko M et al (2001) Characterization of alumina supported Pd catalysts modified by rare earth oxides using X-ray photoelectron spectroscopy and X-ray diffraction: enhanced thermal stability of PdO in Nd/Pd catalysts. Appl Catal A Gen 207(1–2):113–120

    Article  CAS  Google Scholar 

  74. Liu X, Bu Y, Cheng T, Gao W, Jiang Q (2019) Flower-like carbon supported Pd–Ni bimetal nanoparticles catalyst for formic acid electrooxidation. Electrochim Acta 324:134816. https://doi.org/10.1016/j.electacta.2019.134816

    Article  CAS  Google Scholar 

  75. Jacob JM, Corradini PG, Antolini E, Santos NA, Perez J (2015) Electro-oxidation of ethanol on ternary Pt–Sn–Ce/C catalysts. Appl Catal B Environ 165:176–184

    Article  CAS  Google Scholar 

  76. Wang S, Huang J, Zhao Y, Wang S, Wang X, Zhang T et al (2006) Preparation, characterization and catalytic behavior of SnO2 supported au catalysts for low-temperature CO oxidation. J Mol Catal A Chem 259(1–2):245–252

    Article  CAS  Google Scholar 

  77. Kitagawa H, Kojima N, Matsushita N, Ban T, Tsujikawa I (1991) Studies of mixed-valence states in three-dimensional halogen-bridged gold compounds, Cs2AuAuX6(X = cl, Br or I). Part 1. Synthesis, X-ray powder diffraction, and electron spin resonance studies of CsAu0.6Br2.6. Journal of the chemical society. Dalton Trans 11:3115–3119. https://doi.org/10.1039/DT9910003115

    Article  Google Scholar 

  78. Li F, Cao B, Zhu W, Song H, Wang K, Li C (2017) Hydrogenation of phenol over Pt/CNTs: the effects of Pt loading and reaction solvents. Catalysts 7(5):145

    Article  Google Scholar 

  79. Fu X, Yu H, Peng F, Wang H, Qian Y (2007) Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance. Appl Catal A Gen 321(2):190–197. https://doi.org/10.1016/j.apcata.2007.02.002

    Article  CAS  Google Scholar 

  80. Plomp AJ, Schubert T, Storr U, de Jong KP, Bitter JH (2009) Reducibility of platinum supported on nanostructured carbons. Top Catal 52(4):424–430. https://doi.org/10.1007/s11244-008-9174-0

    Article  CAS  Google Scholar 

  81. Zhang Q, Yue R, Jiang F, Wang H, Zhai C, Yang P, du Y (2013) Au as an efficient promoter for electrocatalytic oxidation of formic acid and carbon monoxide: a comparison between Pt-on-au and PtAu alloy catalysts. Gold Bull 46(3):175–184. https://doi.org/10.1007/s13404-013-0098-5

    Article  CAS  Google Scholar 

  82. Zhang S, Shao Y, Yin G, Lin Y (2010) Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation. J Power Sources 195(4):1103–1106. https://doi.org/10.1016/j.jpowsour.2009.08.054

    Article  CAS  Google Scholar 

  83. Ma Y, Zhang H, Zhong H, Xu T, Jin H, Geng X (2010) High active PtAu/C catalyst with core–shell structure for oxygen reduction reaction. Catal Commun 11(5):434–437. https://doi.org/10.1016/j.catcom.2009.11.017

    Article  CAS  Google Scholar 

  84. Guo Z, Zhang X, Sun H, Dai X, Yang Y, Li X et al (2014) Novel honeycomb nanosphere au@Pt bimetallic nanostructure as a high performance electrocatalyst for methanol and formic acid oxidation. Electrochim Acta 134(supplement C):411–417. https://doi.org/10.1016/j.electacta.2014.04.088

    Article  CAS  Google Scholar 

  85. Huang J, Hou H, You T (2009) Highly efficient electrocatalytic oxidation of formic acid by electrospun carbon nanofiber-supported PtxAu100−x bimetallic electrocatalyst. Electrochem Commun 11(6):1281–1284. https://doi.org/10.1016/j.elecom.2009.04.022

    Article  CAS  Google Scholar 

  86. Gu X, Lu Z-H, Jiang H-L, Akita T, Xu Q (2011) Synergistic catalysis of metal–organic framework-immobilized au–Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J Am Chem Soc 133(31):11822–11825. https://doi.org/10.1021/ja200122f

    Article  CAS  PubMed  Google Scholar 

  87. Wang Z-L, Yan J-M, Ping Y, Wang H-L, Zheng W-T, Jiang Q (2013) An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature. Angew Chem Int Ed 52(16):4406–4409. https://doi.org/10.1002/anie.201301009

    Article  CAS  Google Scholar 

  88. Kang X, Miao K, Guo Z, Zou J, Shi Z, Lin Z et al (2018) PdRu alloy nanoparticles of solid solution in atomic scale: size effects on electronic structure and catalytic activity towards electrooxidation of formic acid and methanol. J Catal 364:183–191

    Article  CAS  Google Scholar 

  89. Kankla P, Limtrakul J, Green MLH, Chanlek N, Luksirikul P (2019) Electrooxidation of formic acid enhanced by surfactant-free palladium nanocubes on surface modified graphene catalyst. Appl Surf Sci 471:176–184. https://doi.org/10.1016/j.apsusc.2018.12.001

    Article  CAS  Google Scholar 

  90. Zhang LY, Gong Y, Wu D, Wu G, Xu B, Bi L, Yuan W, Cui Z (2019) Twisted palladium-copper nanochains toward efficient electrocatalytic oxidation of formic acid. J Colloid Interface Sci 537:366–374. https://doi.org/10.1016/j.jcis.2018.11.038

    Article  CAS  PubMed  Google Scholar 

  91. Juárez-Marmolejo L, Pérez-Rodríguez S, Montes de Oca-Yemha MG, Palomar-Pardavé M, Romero-Romo M, Ezeta-Mejía A et al (2019) Carbon supported PdM (M = Fe, co) electrocatalysts for formic acid oxidation. Influence of the Fe and Co precursors. Int J Hydrog Energy 44(3):1640–1649. https://doi.org/10.1016/j.ijhydene.2018.11.112

    Article  CAS  Google Scholar 

  92. Hu S, Scudiero L, Ha S (2014) Electronic effect of Pd-transition metal bimetallic surfaces toward formic acid electrochemical oxidation. Electrochem Commun 38:107–109. https://doi.org/10.1016/j.elecom.2013.11.010

    Article  CAS  Google Scholar 

  93. Chen W, Kim J, Sun S, Chen S (2007) Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid. Langmuir 23(22):11303–11310. https://doi.org/10.1021/la7016648

    Article  CAS  PubMed  Google Scholar 

  94. Chen W, Chen S (2011) Iridium-platinum alloy nanoparticles: composition-dependent electrocatalytic activity for formic acid oxidation. J Mater Chem 21(25):9169–9178. https://doi.org/10.1039/C1JM00077B

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Hilal Kivrak would like to thank for the financial support for The Scientific and Technological Research Council of Turkey TUBITAK projects (project no: 114 M879 and 114 M156).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Berdan Ulas or Hilal Kivrak.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulas, B., Caglar, A., Kivrak, A. et al. Tailoring the metallic composition of Pd, Pt, and Au containing novel trimetallic catalysts to achieve enhanced formic acid electrooxidation activity. Ionics 26, 3109–3121 (2020). https://doi.org/10.1007/s11581-020-03444-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03444-5

Keywords

Navigation