Skip to main content

Advertisement

Log in

Design strategies for development of nickel-rich ternary lithium-ion battery

  • Review Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Compared with other energy storage technologies, lithium-ion batteries (LIBs) have been widely used in many area, such as electric vehicles (EV), because of their low cost, high voltage, and high energy density. Among all kinds of materials for LIB, layer-structured ternary material Ni-rich lithium transition-metal oxides (LiNi1−xyCoxMnyO2 (Ni-rich NCM)) have regarded as one of the most promising cathode materials with its outstanding performance. Herein, we have reviewed used materials and performed modification methods to enhance capacity retention and cycling stability of Ni-rich NCM. Then we offer a comprehensive review of favorable materials with comparison of capacity retention between pristine and modified NCM in the surface coating, doping, shell and gradient form. Indeed, considerable development of the Ni-rich NCM technology, which started with the implementation of a simple coating method, has been achieved so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ko HS (2017) Effect of Co(III) and Ti(IV) co-substitution on concentration gradient layered LiNiO2 cathode material for lithium-ion batteries. Dissertation, Chungbuk National University

  2. Ardhi REA, Liu G, Tran MX et al (2018) Self-relaxant superelastic matrix derived from C60 incorporated Sn nanoparticles for ultra-high-performance Li-ion batteries. ACS Nano 12(6):5588–5604. https://doi.org/10.1021/acsnano.8b01345

    Article  CAS  PubMed  Google Scholar 

  3. Woo JY, Kim AY, Kim MK et al (2017) Cu3Si-doped porous-silicon particles prepared by simplified chemical vapor deposition method as anode material for high-rate and long-cycle lithium-ion batteries. J Alloys Compd 701:425–432. https://doi.org/10.1016/j.jallcom.2017.01.137

    Article  CAS  Google Scholar 

  4. Fang Y, Huang Y, Tong W et al (2018) Synthesis of hollow peanut-like hierarchical mesoporous LiNi1/3Co1/3Mn1/3O2 cathode materials with exceptional cycle performance for lithium-ion batteries by a simple self-template solid-state method. J Alloys Compd 743:707–715. https://doi.org/10.1016/j.jallcom.2018.01.257

    Article  CAS  Google Scholar 

  5. Meng Z, Huang Y, Fang Y et al (2019) Facile preparation of praseodymium oxide coated peanut-like lithium nickel cobalt manganese oxide microspheres for lithium ion batteries with high voltage capabilities. J Alloys Compd 784:620–627. https://doi.org/10.1016/j.jallcom.2019.01.058

    Article  CAS  Google Scholar 

  6. Huang Y, Jiang R, Jia D et al (2011) Preparation, microstructure and electrochemical performance of nanoparticles LiMn2O3.9Br0.1. Mater Lett 65:3486–3488. https://doi.org/10.1016/j.matlet.2011.07.091

    Article  CAS  Google Scholar 

  7. Liu G, Ding X, Zhou H et al (2015) Structure optimization of cathode microporous layer for a direct methanol fuel cell. Appl Energy 147:396–401. https://doi.org/10.1016/j.apenergy.2015.03.021

    Article  CAS  Google Scholar 

  8. Zhou H, Ding X, Liu G et al (2015) Characterization of cathode from LiNixMn2−xO4 nanofibers by electrospinning for Li-ion batteries. RSC Adv 5:108007–108014. https://doi.org/10.1039/C5RA21884E

    Article  CAS  Google Scholar 

  9. Cho HS (2013) The study to improve electro chemical properties and thermal stability for SiO2 surface modification on LiNi0.6Co0.2Mn0.2O2 in Lithium ion battery. Dissertation, Hoseo University

  10. Jiang L, Wang Q, Sun J et al (2018) Electrochemical performance and thermal stability analysis of LiNixCoyMnzO2 cathode based on a composite safety electrolyte. J Hazard Mater 351:260–269. https://doi.org/10.1016/j.jhazmat.2018.03.015

    Article  CAS  PubMed  Google Scholar 

  11. Ding X, Zhou H, Liu G et al (2015) Electrochemical evaluation of LiAl0.05Ni0.05Mn1.9O4 cathode material synthesized via electrospinning method. J Alloys Compd 632:147–151. https://doi.org/10.1016/j.jallcom.2015.01.163

    Article  CAS  Google Scholar 

  12. Zhou H, Ding X, Liu G et al (2015) Preparation and characterization of ultralong spinel lithium manganese oxide nanofiber cathode via electrospinning method. Electrochim Acta 152:274–279. https://doi.org/10.1016/j.electacta.2014.11.147

    Article  CAS  Google Scholar 

  13. Zhang Y, Jia D, Tang Y et al (2018) In-situ chelating synthesis of hierarchical LiNi1/3Co1/3Mn1/3O2 polyhedron assemblies with ultralong cycle life for Li-ion batteries. Small 1704354. https://doi.org/10.1002/smll.201704354

  14. Park Y (2017) The growth explorer (3) electric car - evolution to the third generation. Mirae Asset Daewoo Research, Seoul

    Google Scholar 

  15. Jin Y (2017) Industry update. IBKS Research, Seoul

    Google Scholar 

  16. Park JK (2018) Principles and applications of lithium secondary batteries. Hongrung Publishing Company, Seoul

    Google Scholar 

  17. Huang Y, Qi Y, Jia D, Wang X, Guo Z, Cho WI (2012) Synthesis and electrochemical properties of spinel Li4Ti5O12−xClx anode materials for lithium-ion batteries. J Solid State Electrochem 16:2011–2016. https://doi.org/10.1007/s10008-011-1611-5

    Article  CAS  Google Scholar 

  18. Lee SW (2017) The 4th industrial revolution insight & foresight - electric vehicle. Eugene Investment & Securities, Seoul

  19. Kim JH (2018) Improved high voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode via interfacial stabilization for rechargeable lithium ion batteries. Dissertation, Chungnam National University

  20. Hou P, Zhang H, Zi Z et al (2017) Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries. J Mater Chem A 5(9):4254–4279. https://doi.org/10.1039/c6ta10297b

    Article  CAS  Google Scholar 

  21. Kane M (2019) NCM 811 lithium-ion cells quickly increase in market share. INSIDE EVs. https://insideevs.com/news/356364/ncm-811-quickly-increases-market-share. Accessed 14 Dec 2019

  22. De Biasi L, Schwarz B, Brezesinski T et al (2019) Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni-rich NCM and Li-rich HE-NCM cathode materials in Li-ion batteries. Adv Mater 1900985. https://doi.org/10.1002/adma.201900985

  23. Lee CW (2017) Control of residual Li compounds on Ni-rich NCM(≥80%). Dissertation, Dong-A University

  24. Liang CP, Longo RC, Kong F et al (2017) Obstacles toward unity efficiency of LiNi1-2xCoxMnxO2 (x = 0 ~ 1/3) (NCM) cathode materials: insights from ab initio calculations. J Power Sources 340:217–228. https://doi.org/10.1016/j.jpowsour.2016.11.056

    Article  CAS  Google Scholar 

  25. Chen S, He T, Su Y, Lu Y, Bao L, Chen L, Zhang Q, Wang J, Chen R, Wu F (2017) Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 9(35):29732–29743. https://doi.org/10.1021/acsami.7b08006

    Article  CAS  PubMed  Google Scholar 

  26. Tong W, Huang Y, Cai Y et al (2018) Synthesis of hierarchical mesoporous lithium nickel cobalt manganese oxide spheres with high rate capability for lithium-ion batteries. Appl Surf Sci 428:1036–1045. https://doi.org/10.1016/j.apsusc.2017.09.253

    Article  CAS  Google Scholar 

  27. Kim JY, Kim AY, Liu G, Woo JY, Kim H, Lee JK (2018) Li4SiO4-based artificial passivation thin film for improving interfacial stability of Li metal anodes. ACS Appl Mater Interfaces 10(10):8692–8701. https://doi.org/10.1021/acsami.7b18997

    Article  CAS  PubMed  Google Scholar 

  28. Park S, Ku H, Lee KJ et al (2015) The effect of NH3 concentration during co-precipitation of precursors from leachate of lithium-ion battery positive electrode active materials. J Korean Inst Resour Recycl 24(6):9–16. https://doi.org/10.7844/kirr.2015.24.6.9

    Article  Google Scholar 

  29. Xu L, Zhou F, Kong J et al (2018) Influence of precursor phase on the structure and electrochemical properties of Li(Ni0.6 Mn0.2 Co0.2)O2 cathode materials. Solid State Ionics 324:49–58. https://doi.org/10.1016/j.ssi.2018.06.010

    Article  CAS  Google Scholar 

  30. Choi W, Park SR, Kang CH (2016) Characteristics of Ni1/3Co1/3Mn1/3(OH)2 powders prepared by co-precipitation in air and nitrogen atmospheres. J Korean Powder Metall Inst 23(2):136–142. https://doi.org/10.4150/KPMI.2016.23.2.136

    Article  Google Scholar 

  31. Zhao R, Miao J, Lan W et al (2018) Synthesis of layered materials by ultrasonic/microwave-assisted co-precipitation method; a case study of LiNi0.5Co0.2Mn0.3O2. Sustain Mater Technol 17:e00083. https://doi.org/10.1016/j.susmat.2018.e00083

    Article  CAS  Google Scholar 

  32. Li L, Chen Z, Zhang Q et al (2015) A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high performance cathode material for lithium ion batteries. J Mater Chem A 3:894–904. https://doi.org/10.1039/c4ta05902f

    Article  CAS  Google Scholar 

  33. Nithya C, Thirunakaran R, Sivashanmugam A et al (2009) High-capacity sol-gel synthesis of LiNixCoyMn1-x-yO2 (0≤x, y≤0.5) cathode material for use in lithium rechargeable batteries. J Phys Chem C 113:17936–17944. https://doi.org/10.1021/jp907036a

    Article  CAS  Google Scholar 

  34. Li T, Li X, Wang Z et al (2017) A short process for the efficient utilization of transition metal chlorides in lithium-ion batteries; a case of Ni0.8Co0.1Mn0.1O1.1 and LiNi0.8Co0.1Mn0.1O2. J Power Sources 342:495–503. https://doi.org/10.1016/j.jpowsour.2016.12.095

    Article  CAS  Google Scholar 

  35. Zheng H, Chen X, Yang Y, Li L, Li G, Guo Z, Feng C (2017) Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathode with high electrochemical performance. ACS Appl Mater Interfaces 9:39560–39568. https://doi.org/10.1021/acsami.7b10264

    Article  CAS  PubMed  Google Scholar 

  36. Jung SK, Gwon H, Hong J et al (2014) Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater 4:1300787. https://doi.org/10.1002/aenm.201300787

    Article  CAS  Google Scholar 

  37. Tan C, Luo H, Du K et al (2017) Core-shell structured Li[(Ni0.9Co0.05Al0.05)0.6(Ni0.4Co0.2Mn0.4)0.4]O2 cathode material for high-energy lithium ion batteries. Ionics 24(5):1293–1304. https://doi.org/10.1007/s11581-017-2311-7

    Article  CAS  Google Scholar 

  38. Ding Y, Mu D, Wu B et al (2017) Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Appl Energy 195:586–599. https://doi.org/10.1016/j.apenergy.2017.03.074

    Article  CAS  Google Scholar 

  39. Yang K, Fan LZ, Guo J et al (2012) Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. Electrochim Acta 63:363–368. https://doi.org/10.1016/j.electacta.2011.12.121

    Article  CAS  Google Scholar 

  40. Kong JZ, Ren C, Tai GA et al (2014) Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material. J Power Sources 266:433–439. https://doi.org/10.1016/j.jpowsour.2014.05.027

    Article  CAS  Google Scholar 

  41. Wu F, Tian J, Su Y et al (2014) Lithium-active molybdenum trioxide coated LiNi0.5Co0.2Mn0.3O2 cathode material with enhanced electrochemical properties for lithium-ion batteries. J Power Sources 269:747–754. https://doi.org/10.1016/j.jpowsour.2014.07.057

    Article  CAS  Google Scholar 

  42. Kong JZ, Wang SS, Tai GA et al (2016) Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by ultrathin ZrO2 coating. J Alloys Compd 657:593–600. https://doi.org/10.1016/j.jallcom.2015.10.187

    Article  CAS  Google Scholar 

  43. Liu XH, Kou LQ, Shi T et al (2014) Excellent high rate capability and high voltage cycling stability of Y2O3-coated LiNi0.5Co0.2Mn0.3O2. J Power Sources 267:874–880. https://doi.org/10.1016/j.jpowsour.2014.05.047

    Article  CAS  Google Scholar 

  44. Wang ZY, Huang S, Chen B et al (2014) Infiltrative coating of LiNi0.5Co0.2Mn0.3O2 microspheres with layer-structured LiTiO2; toward superior cycling performances for Li-ion batteries. J Mater Chem A 2:19983–19987. https://doi.org/10.1039/C4TA04196H

    Article  CAS  Google Scholar 

  45. Wang D, Li X, Wang Z et al (2015) Improved high voltage electrochemical performance of Li2ZrO3-coated LiNi0.5Co0.2Mn0.3O2 cathode material. J Alloys Compd 647:612–619. https://doi.org/10.1016/j.jallcom.2015.06.071

    Article  CAS  Google Scholar 

  46. Yang X, Zuo Z, Wang H et al (2015) The contradiction between the half-cell and full-battery evaluations on the tungsten-coating LiNi0.5Co0.2Mn0.3O2 cathode. Electrochim Acta 180:604–609. https://doi.org/10.1016/j.electacta.2015.08.150

    Article  CAS  Google Scholar 

  47. Wang D, Li X, Wang Z et al (2015) Multifunctional Li2O-2B2O3 coating for enhancing high voltage electrochemical performances and thermal stability of layered structured LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries Al-doped. Electrochim Acta 174:1225–1233. https://doi.org/10.1016/j.electacta.2015.06.111

    Article  CAS  Google Scholar 

  48. Chen Y, Zhang Y, Wang F et al (2014) Improve the structure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material by nano-Al2O3 ultrasonic coating. J Alloys Compd 611:135–141. https://doi.org/10.1016/j.jallcom.2014.05.068

    Article  CAS  Google Scholar 

  49. Chen Y, Zhang Y, Chen B et al (2014) An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J Power Sources 256:20–27. https://doi.org/10.1016/j.jpowsour.2014.01.061

    Article  CAS  Google Scholar 

  50. Jeong HY, Jung YH, Seok DC et al (2018) Surface cleaning effect of NCM powder and improvement of lithium ion battery on the thermal stability and life cycle employing dielectric barrier discharge technique. Curr Appl Phys 18:961–967. https://doi.org/10.1016/j.cap.2018.05.015

    Article  Google Scholar 

  51. Miao X, Ni H, Zhang H et al (2015) Li2ZrO3-coated LiNi0.6Co0.2Mn0.2O2 for high-performance cathode material in lithium-ion battery. Ionics 21:2091–2100. https://doi.org/10.1007/s11581-015-1469-0

    Article  CAS  Google Scholar 

  52. Fu J, Mu D, Wu B et al (2017) Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode at high cutoff voltage by modifying electrode/electrolyte interface with lithium metasilicate. Electrochim Acta 246:27–34. https://doi.org/10.1016/j.electacta.2017.06.038

    Article  CAS  Google Scholar 

  53. Liu S, Wu H, Huang L et al (2016) Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J Alloys Compd 674:447–454. https://doi.org/10.1016/j.jallcom.2016.03.060

    Article  CAS  Google Scholar 

  54. Cho J, Kim H, Park B (2004) Comparison of overcharge behavior of AlPO4-coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 cathode materials in Li-ion cells. J Electrochem Soc 151(10):A1707–A1711. https://doi.org/10.1149/1.1790511

    Article  CAS  Google Scholar 

  55. Xiong X, Wang Z, Yin X et al (2013) A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials. Mater Lett 110:4–9. https://doi.org/10.1016/j.matlet.2013.07.098

    Article  CAS  Google Scholar 

  56. Liang L, Hu G, Jiang F et al (2016) Electrochemical behaviors of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method. J Alloys Compd 657:570–581. https://doi.org/10.1016/j.jallcom.2015.10.177

    Article  CAS  Google Scholar 

  57. Meng K, Wang Z, Guo H et al (2016) Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3. Electrochim Acta 211:822–831. https://doi.org/10.1016/j.electacta.2016.06.110

    Article  CAS  Google Scholar 

  58. Shi Y, Zhang M, Qian D et al (2016) Ultrathin Al2O3 coatings for improved cycling performance and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode material. Electrochim Acta 203:154–161. https://doi.org/10.1016/j.electacta.2016.03.185

    Article  CAS  Google Scholar 

  59. Yao C, Mo Y, Jia X et al (2018) LiMnPO4 surface coating on LiNi0.5Co0.2Mn0.3O2 by a simple sol-gel method and improving electrochemical properties. Solid State Ionics 317:156–163. https://doi.org/10.1016/j.ssi.2018.01.018

    Article  CAS  Google Scholar 

  60. Hu G, Zhang M, Wu L et al (2017) Effects of Li2SiO3 coating on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries. J Alloys Compd 690:589–597. https://doi.org/10.1016/j.jallcom.2016.08.187

    Article  CAS  Google Scholar 

  61. Hu G, Zhang M, Wu L et al (2016) Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathodes produced via nanoscale coating of Li+ -conductive Li2SnO3. Electrochim Acta 213:547–556. https://doi.org/10.1016/j.electacta.2016.07.154

    Article  CAS  Google Scholar 

  62. Cao J, Xiao K, Jiang F et al (2016) Surface design with spinel LiMn1.5Ni0.5O4 for improving electrochemical properties of LiNi0.5Co0.2Mn0.3O2 at high cut-off voltage. Mater Lett 184:29–33. https://doi.org/10.1016/j.matlet.2016.08.011

    Article  CAS  Google Scholar 

  63. Ren T, Zhang J, Wang D et al (2018) Enhancing the high-voltage performances of Ni-rich cathode materials by homogeneous La2O3 coating via a freeze-drying assisted method. Ceram Int 44(12):14660–14666. https://doi.org/10.1016/j.ceramint.2018.05.092

    Article  CAS  Google Scholar 

  64. Tao T, Chen C, Yao Y et al (2017) Enhanced electrochemical performance of ZrO2 modified LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. Ceram Int 43(17):15173–15178. https://doi.org/10.1016/j.ceramint.2017.08.048

    Article  CAS  Google Scholar 

  65. Cho W, Kim SM, Song JH et al (2015) Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J Power Sources 282:45–50. https://doi.org/10.1016/j.jpowsour.2014.12.128

    Article  CAS  Google Scholar 

  66. Cho W, Kim SM, Lee KW et al (2016) Investigation of new manganese orthophosphate Mn3(PO4)2 coating for nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode and improvement of its thermal properties. Electrochim Acta 198:77–83. https://doi.org/10.1016/j.electacta.2016.03.079

    Article  CAS  Google Scholar 

  67. Xu L, Zhou F, Zhou H et al (2018) Ti3C2(OH)2 coated Li(Ni0.6Co0.2Mn0.2)O2 cathode material with enhanced electrochemical properties for lithium ion battery. Electrochim Acta S0013-4686(18):31915–31917. https://doi.org/10.1016/j.electacta.2018.08.085

    Article  CAS  Google Scholar 

  68. Chen X, Ma F, Li Y et al (2018) Nitrogen-doped carbon coated LiNi0.6Co0.2Mn0.2O2 cathode with enhanced electrochemical performance for Li-ion batteries. Electrochim Acta 284:526–533. https://doi.org/10.1016/j.electacta.2018.07.183

    Article  CAS  Google Scholar 

  69. Tao F, Yan X, Liu JJ et al (2016) Effects of PVP-assisted Co3O4 coating on the electrochemical and storage properties of LiNi0.6Co0.2Mn0.2O2 at high cut-off voltage. Electrochim Acta 210:548–556. https://doi.org/10.1016/j.electacta.2016.05.060

    Article  CAS  Google Scholar 

  70. Tang W, Chen Z, Xiong F et al (2019) An effective etching-induced coating strategy to shield LiNi0.8Co0.1Mn0.1O2 electrode materials by LiAlO2. J Power Sources 412:246–254. https://doi.org/10.1016/j.jpowsour.2018.11.062

    Article  CAS  Google Scholar 

  71. Zhu J, Li Y, Xue L et al (2018) Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating. J Alloys Compd S0925-8388(18):33483–33492. https://doi.org/10.1016/j.jallcom.2018.09.237

    Article  CAS  Google Scholar 

  72. Kang GH (2017) Effects of Sn substitution on the structural and electrochemical properties of Ni-rich cathode materials for lithium-ion batteries. Dissertation, Sejong University

  73. Zhang M, Zhao H, Tan M et al (2018) Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage. J Alloys Compd S0925-8388(18):33533–33533. https://doi.org/10.1016/j.jallcom.2018.09.281

    Article  CAS  Google Scholar 

  74. Xiong X, Wang Z, Guo H et al (2013) Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60 °C. J Mater Chem A 1:1284–1288. https://doi.org/10.1039/C2TA00678B

    Article  CAS  Google Scholar 

  75. Xiong X, Ding D, Wang Z, Huang B, Guo H, Li X (2014) Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole. J Solid State Electrochem 18:2619–2624. https://doi.org/10.1007/s10008-014-2519-7

    Article  CAS  Google Scholar 

  76. Xu S, Du C, Xu X et al (2017) A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries. Electrochim Acta 248:534–540. https://doi.org/10.1016/j.electacta.2017.07.169

    Article  CAS  Google Scholar 

  77. Li P, Zhao S, Zhuang Y (2018) Improved electrochemical performance of LiNi0.8Co0.1Mn0.1O2 modified with 4-vinylbenzeneboronic acid. Appl Surf Sci S0169-4332(18):31301–31301. https://doi.org/10.1016/j.apsusc.2018.05.027

    Article  CAS  Google Scholar 

  78. Jia X, Yan M, Zhou Z (2017) Nd-doped LiNi0.5Co0.2Mn0.3O2 as a cathode material for better rate capability in high voltage cycling of Li-ion batteries. Electrochim Acta 254:50–58. https://doi.org/10.1016/j.electacta.2017.09.118

    Article  CAS  Google Scholar 

  79. Markus IM, Lin F, Kam KC et al (2014) Computational and experimental investigation of Ti substitution in Li1(NixMnxCo1-2x-yTiy)O2 for lithium ion batteries. J Phys Chem Lett 5:3649–3655. https://doi.org/10.1021/jz5017526

    Article  CAS  PubMed  Google Scholar 

  80. Yang Z, Guo X, Xiang W et al (2017) K-doped layered LiNi0.5Co0.2Mn0.3O2 cathode material; towards the superior rate capability and cycling performance. J Alloys Compd 699:358–365. https://doi.org/10.1016/j.jallcom.2016.11.245

    Article  CAS  Google Scholar 

  81. Chen H, Hu Q, Huang Z et al (2015) Synthesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery. Ceram Int 42:263–269. https://doi.org/10.1016/j.ceramint.2015.08.104

    Article  CAS  Google Scholar 

  82. Zeng Y, Qiu K, Yang Z et al (2016) Influence of europium doping on the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Ceram Int 42:10433–10438. https://doi.org/10.1016/j.ceramint.2016.03.189

    Article  CAS  Google Scholar 

  83. Hu G, Zhang M, Liang L et al (2016) Mg-Al-B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage. Electrochim Acta 190:264–275. https://doi.org/10.1016/j.electacta.2016.01.039

    Article  CAS  Google Scholar 

  84. Xue L, Li Y, Xu B et al (2018) Effect of Mo doping on the structure and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material at high cut-off voltage. J Alloys Compd 748:561–568. https://doi.org/10.1016/j.jallcom.2018.03.192

    Article  CAS  Google Scholar 

  85. Huang Z, Wang Z, Jing Q et al (2016) Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material. Electrochim Acta 192:120–126. https://doi.org/10.1016/j.electacta.2016.01.139

    Article  CAS  Google Scholar 

  86. Huang Z, Wang Z, Zheng X et al (2015) Yang, Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochim Acta 182:795–802. https://doi.org/10.1016/j.electacta.2015.09.151

    Article  CAS  Google Scholar 

  87. Schipper F, Dixit M, Kovacheva D et al (2016) Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy; zirconium-doped LiNi0.6Co0.2Mn0.2O2. J Mater Chem A 4:16073–16084. https://doi.org/10.1039/c6ta06740a

    Article  CAS  Google Scholar 

  88. Kaneda H, Koshika Y, Nakamura T et al (2017) Improving the cycling performance and thermal stability of LiNi0.6Co0.2Mn0.2O2 cathode materials by Nb-doping and surface modification. Int J Electrochem Sci 12:4640–4653. https://doi.org/10.20964/2017.06.19

    Article  CAS  Google Scholar 

  89. Liu W, Li X, Xiong D et al (2018) Significantly improving cycling performance of cathodes in lithium ion batteries; the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44:111–120. https://doi.org/10.1016/j.nanoen.2017.11.010

    Article  CAS  Google Scholar 

  90. Liu S, Dang Z, Liu D et al (2018) Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures. J Power Sources 396:288–296. https://doi.org/10.1016/j.jpowsour.2018.06.052

    Article  CAS  Google Scholar 

  91. Wang M, Zhang R, Gong Y et al (2017) Improved electrochemical performance of the LiNi0.8Co0.1Mn0.1O2 material with lithium-ion conductor coating for lithium-ion batteries. Solid State Ionics 312:53–60. https://doi.org/10.1016/j.ssi.2017.10.017

    Article  CAS  Google Scholar 

  92. Woo SW, Myung ST, Bang H et al (2009) Improvement of electrochemical and thermal properties of LiNi0.8Co0.1Mn0.1O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim. Acta 54:3851–3856. https://doi.org/10.1016/j.electacta.2009.01.048

  93. Yue P, Wang Z, Guo H et al (2013) A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2-zFz cathode materials. Electrochim. Acta 92:1–8. https://doi.org/10.1016/j.electacta.2013.01.018

  94. Dong M, Li X, Wang Z et al (2017) Enhanced cycling stability of La modified LiNi0.8–xCo0.1Mn0.1LaxO2 for Li-ion battery. Trans Nonferrous Metals Soc China 27:1134–1142. https://doi.org/10.1016/S1003-6326(17)60132-8

    Article  CAS  Google Scholar 

  95. Lu W, Guo X, Luo Y et al (2018) Core-shell materials for advanced batteries. Chem Eng J 355:208–237. https://doi.org/10.1016/j.cej.2018.08.132

    Article  CAS  Google Scholar 

  96. Lee Y, Kim H, Yim T et al (2018) Compositional core-shell design by nickel leaching on the surface of Ni-rich cathode materials for advanced high-energy and safe rechargeable batteries. J Power Sources 400:87–95. https://doi.org/10.1016/j.jpowsour.2018.08.006

    Article  CAS  Google Scholar 

  97. Hu G, Qi X, Hu K et al (2018) A facile cathode design with a LiNi0.6Co0.2Mn0.2O2 core and an AlF3 -activated Li1.2Ni0.2Mn0.6O2 shell for Li-ion batteries. Electrochim Acta 265:391–399. https://doi.org/10.1016/j.electacta.2018.01.176

    Article  CAS  Google Scholar 

  98. Zhang Y, Shi H, Song D et al (2016) Facile synthesis of a novel structured Li[Ni0.66Co0.1Mn0.24]O2 cathode material with improved cycle life and thermal stability via ion diffusion. J Power Sources 327:38–43. https://doi.org/10.1016/j.jpowsour.2016.07.042

    Article  CAS  Google Scholar 

  99. Chen Z, Qin Y, Amine K et al (2010) Role of surface coating on cathode materials for lithium-ion batteries. J Mater Chem 20(36):7606–7612. https://doi.org/10.1039/C0JM00154F

    Article  CAS  Google Scholar 

  100. Sun YK, Lee BR, Noh HJ et al (2011) A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries. J Mater Chem 21(27):10108–10112. https://doi.org/10.1039/c0jm04242k

    Article  CAS  Google Scholar 

  101. Chen Y, Li Y, Tang S et al (2018) Enhanced electrochemical properties of the Cd-modified LiNi0.6Co0.2Mn0.2O2 cathode materials at high cut-off voltage. J Power Sources 395:403–413. https://doi.org/10.1016/j.jpowsour.2018.05.088

    Article  CAS  Google Scholar 

  102. Ran Q, Zhao H, Wang Q et al (2019) Dual functions of gradient phosphate polyanion doping on improving the electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at high cut-off voltage and high temperature. Electrochim Acta S0013-4686(19):30104–30105. https://doi.org/10.1016/j.electacta.2019.01.082

    Article  CAS  Google Scholar 

  103. Lei T, Li Y, Su Q et al (2018) High-voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials via Al concentration gradient modification. Ceram Int 44(8):8809–8817. https://doi.org/10.1016/j.ceramint.2018.02.053

    Article  CAS  Google Scholar 

  104. Yoon SJ, Myung ST, Noh HJ, Lu J, Amine K, Sun YK (2014) Nanorod and nanoparticle shells in concentration gradient core-shell lithium oxides for rechargeable lithium batteries. ChemSusChem 7(12):3295–3303. https://doi.org/10.1002/cssc.201402389

    Article  CAS  PubMed  Google Scholar 

  105. Kim J, Cho H, Jeong HY et al (2017) Self-induced concentration gradient in nickel-rich cathodes by sacrificial polymeric bead clusters for high-energy lithium-ion batteries. Adv Energy Mater 7(12):1602559. https://doi.org/10.1002/aenm.201602559

    Article  CAS  Google Scholar 

  106. Yoo GW, Jang BC, Son JT et al (2014) Novel design of core shell structure by NCA modification on NCM cathode material to enhance capacity and cycle life for lithium secondary battery. Ceram Int 1:1913–1916. https://doi.org/10.1016/j.ceramint.2014.09.077

    Article  CAS  Google Scholar 

  107. Zeng X, Zhan C, Lu J et al (2018) Stabilization of a high-capacity and high-power nickel-based cathode for Li-ion batteries. Chem 4(4):690–704. https://doi.org/10.1016/j.chempr.2017.12.027

    Article  CAS  Google Scholar 

  108. Sun YK, Chen Z, Noh HJ, Lee DJ, Jung HG, Ren Y, Wang S, Yoon CS, Myung ST, Amine K (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11(11):942–947. https://doi.org/10.1038/nmat3435

    Article  CAS  PubMed  Google Scholar 

  109. Hua C, Du K, Tan C et al (2014) Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries. J Alloys Compd 614:264–270. https://doi.org/10.1016/j.jallcom.2014.06.049

    Article  CAS  Google Scholar 

  110. Yoon SJ, Park KJ, Lim BB et al (2014) Improved performances of Li[Ni0.65Co0.08Mn0.27]O2cathode material with full concentration gradient for Li-ion batteries. J The Electrochemical Society 162(2):A3059–A3063. https://doi.org/10.1149/2.0101502jes

    Article  CAS  Google Scholar 

  111. Noh HJ, Ju JW, Sun YK (2013) Comparison of nanorod-structured Li[Ni0.54Co0.16Mn0.30]O2 with conventional cathode materials for Li-ion batteries. ChemSusChem 7(1):245–252. https://doi.org/10.1002/cssc.201300379

    Article  CAS  PubMed  Google Scholar 

  112. Ju JW, Lee EJ, Yoon CS et al (2013) Optimization of layered cathode material with full concentration gradient for lithium-ion batteries. J Phys Chem C 118(1):175–182. https://doi.org/10.1021/jp4097887

    Article  CAS  Google Scholar 

  113. Lee EJ, Noh HJ, Yoon CS et al (2015) Effect of outer layer thickness on full concentration gradient layered cathode material for lithium-ion batteries. J Power Sources 273:663–669. https://doi.org/10.1016/j.jpowsour.2014.09.161

    Article  CAS  Google Scholar 

  114. Kim UH, Kim JH, Hwang JY et al (2018) Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries. Mater Today. https://doi.org/10.1016/j.mattod.2018.12.004

  115. Lim BB, Yoon SJ, Park KJ et al (2015) Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries. Adv Funct Mater 25(29):4673–4680. https://doi.org/10.1002/adfm.201501430

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by a grant from the National Natural Science Foundation of China (No.61504080 and No. 61704107), the Young Eastern Scholar (QD2016012) of Shanghai Municipal Education Commission, and the Shanghai Pujiang Program (17PJ1406800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyan Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, K.H., Liu, X., Ding, X. et al. Design strategies for development of nickel-rich ternary lithium-ion battery. Ionics 26, 1063–1080 (2020). https://doi.org/10.1007/s11581-019-03429-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03429-z

Keywords

Navigation